Integrated signalling pathways for mast-cell activation
Tóm tắt
Từ khóa
Tài liệu tham khảo
Kitamura, Y. Heterogeneity of mast cells and phenotypic change between subpopulations. Annu. Rev. Immunol. 7, 59?76 (1989).
Galli, S. J., Nakae, S. & Tsai, M. Mast cells in the development of adaptive immune responses. Nature Immunol. 6, 135?142 (2005).
Mekori, Y. A. The mastocyte: the 'other' inflammatory cell in immunopathogenesis. J. Allergy Clin. Immunol. 114, 52?57 (2004).
Cheng, P. C., Dykstra, M. L., Mitchell, R. N. & Pierce, S. K. A role for lipid rafts in B cell antigen receptor signaling and antigen targeting. J. Exp. Med. 190, 1549?1560 (1999).
Xavier, R., Brennan, T., Li, Q., McCormack, C. & Seed, B. Membrane compartmentation is required for efficient T cell activation. Immunity 8, 723?732 (1998).
Field, K. A., Holowka, D. & Baird, B. Structural aspects of the association of FcεRI with detergent-resistant membranes. J. Biol. Chem. 274, 1753?1758 (1999).
Eiseman, E. & Bolen, J. B. Engagement of the high affinity IgE receptor activates Src protein-related tyrosine kinases. Nature 355, 78?80 (1992).
Paolini, R., Jouvin, M. H. & Kinet, J. P. Phosphorylation and dephosphorylation of the high affinity receptor for immunoglobulin E immediately after receptor engagement and disengagement. Nature 353, 855?858 (1991).
Pribluda, V. S., Pribluda, C. & Metzger, H. Transphosphorylation as the mechanism by which the high-affinity receptor for IgE is phosphorylated upon aggregation. Proc. Natl Acad. Sci. USA 91, 11246?11250 (1994).
Kovarova, M. et al. Structure?function analysis of Lyn kinase association with lipid rafts and initiation of early signaling events after FcεRI aggregation. Mol. Cell. Biol. 21, 8318?8328 (2001).
Brown, D. A. & London, E. Functions of lipid rafts in biological membranes. Annu. Rev. Cell Dev. Biol. 14, 111?136 (1998).
Young, R. M., Holowka, D. & Baird, B. A lipid raft environment enhances Lyn kinase activity by protecting the active site tyrosine from dephosphorylation. J. Biol. Chem. 278, 20746?20752 (2003).
Hibbs, M. L. et al. Multiple defects in the immune system of Lyn-deficient mice culminating in autoimmune disease. Cell 83, 301?311 (1995).
Odom, S. et al. Negative regulation of immunoglobulin E-dependent allergic responses by Lyn kinase. J. Exp. Med. 199, 1491?1502 (2004).
Nishizumi, H. & Yamamoto, T. Impaired tyrosine phosphorylation and Ca2+ mobilization, but not degranulation, in Lyn-deficient bone marrow-derived mast cells. J. Immunol. 158, 2350?2355 (1997).
Kawakami, Y. et al. Redundant and opposing functions of two tyrosine kinases, Btk and Lyn, in mast cell activation. J. Immunol. 165, 1210?1219 (2000).
Parravicini, V. et al. Fyn kinase initiates complementary signals required for IgE-dependent mast cell degranulation. Nature Immunol. 3, 741?748 (2002). This was the first definitive study to show that there are parallel pathways for FcεRI-mediated mast-cell activation.
Hernandez-Hansen, V. et al. Dysregulated FcεRI signaling and altered Fyn and SHIP activities in Lyn-deficient mast cells. J. Immunol. 173, 100?112 (2004).
Furomoto, Y., Nunomura, S., Terada, T., Rivera, J. & Ra, C. The FcεRIβ immunoreceptor tyrosine-based activation motif exerts inhibitory control on MAPK and IκB kinase phosphorylation and mast cell cytokine production. J. Biol. Chem. 279, 49177?49187 (2004).
Chen, T. et al. Interaction of phosphorylated FcεRIγ immunoglobulin receptor tyrosine activation motif-based peptides with dual and single SH2 domains of p72syk. Assessment of binding parameters and real time binding kinetics. J. Biol. Chem. 271, 25308?25315 (1996).
Benhamou, M., Ryba, N. J. P., Kihara, H., Nishikata, H. & Siraganian, R. P. Protein-tyrosine kinase p72syk in high affinity IgE receptor signaling. J. Biol. Chem. 268, 23318?23324 (1993).
Benhamou, M. & Siraganian, R. Protein-tyrosine phosphorylation: an essential early component of FcεRI signalling. Immunol. Today 13, 195?201 (1992).
Saitoh, S. et al. LAT is essential for FcεRI-mediated mast cell activation. Immunity 12, 525?535 (2000). This study was the first to define a role for LAT, and transmembrane adaptor molecules in general, in FcεRI-mediated mast-cell activation.
Zhang, W., Sloan-Lancaster, J., Kitchen, J., Trible, R. P. & Samelson, L. E. LAT: the ZAP-70 tyrosine kinase substrate that links T cell receptor to cellular activation. Cell 92, 83?92 (1998). This paper was the first to describe LAT.
Zhu, M., Shen, S., Liu, Y., Granillo, O. & Zhang, W. Localization of linker for activation of T cells to lipid rafts is not essential in T cell activation and development. J. Immunol. 174, 31?35 (2005).
Rivera, J. Molecular adapters in FcεRI signaling and the allergic response. Curr. Opin. Immunol. 14, 688?693 (2002).
Salojin, K. V., Zhang, J., Meagher, C. & Delovitch, T. L. ZAP-70 is essential for the T cell antigen receptor-induced plasma membrane targeting of SOS and VAV in T cells. J. Biol. Chem. 275, 5966?5975 (2000).
Zhang, W. et al. Association of Grb2, Gads, and phospholipase C-γ1 with phosphorylated LAT tyrosine residues. Effect of LAT tyrosine mutations on T cell antigen receptor-mediated signaling. J. Biol. Chem. 275, 23355?23361 (2000).
Sommers, C. L. et al. Knock-in mutation of the distal four tyrosines of linker for activation of T cells blocks murine T cell development. J. Exp. Med. 194, 135?142 (2001).
Brdicka, T. et al. Non-T cell activation linker (NTAL): a transmembrane adaptor protein involved in immunoreceptor signaling. J. Exp. Med. 196, 1617?1626 (2002).
Janssen, E., Zhu, M., Zhang, W., Koonpaew, S. & Zhang, W. LAB: a new transmembrane-associated adaptor molecule in B cell activation. Nature Immunol. 4, 117?123 (2003). References 33 and 34 were the first to describe NTAL.
Volna, P. et al. Negative regulation of mast cell signaling and function by the adaptor LAB/NTAL. J. Exp. Med. 200, 1001?1013 (2004). This paper, together with reference 37, describes studies that were carried out using Ntal−/− and Lat−/−Ntal−/− BMMCs. These studies indicate that NTAL both negatively and positively regulates FcεRI-mediated mast-cell activation.
Tkaczyk, C. et al. NTAL phosphorylation is a pivotal link between the signaling cascades leading to human mast cell degranulation following Kit activation and FcεRI aggregation. Blood 104, 207?214 (2004). This was the first study to show that NTAL might have a role in FcεRI-mediated, KIT-regulated mast-cell activation.
Zhu, M., Liu, Y., Koonpaew, S., Granillo, O. & Zhang, W. Positive and negative regulation of FcεRI-mediated signaling by the adaptor protein LAB/NTAL. J. Exp. Med. 200, 991?1000 (2004).
Rivera, J. NTAL/LAB and LAT: a balancing act in mast-cell activation and function. Trends Immunol. 26, 119?122 (2005).
Stork, B. et al. Grb2 and the non-T cell activation linker NTAL constitute a Ca2+-regulating signal circuit in B lymphocytes. Immunity 21, 681?691 (2004).
Linnekin, D. Early signaling pathways activated by c-Kit in hematopoietic cells. Int. J. Biochem. Cell Biol. 31, 1053?1074 (1999).
Berry, D. M., Nash, P., Liu, S. K., Pawson, T. & McGlade, C. J. A high affinity Arg-X-X-Lys SH3 binding motif confers specificity for the interaction between Gads and SLP-76 in T cell signaling. Curr. Biol. 12, 1336?1341 (2002).
Kang, H. et al. SH3 domain recognition of a proline-independent tyrosine-based RKxxYxxY motif in immune cell adaptor SKAP55. EMBO J. 19, 2889?2899 (2000).
Liu, J. et al. FYB (FYN binding protein) serves as a binding partner for lymphoid protein and FYN kinase substrate SKAP55 and a SKAP55-related protein in T cells. Proc. Natl Acad. Sci. USA 95, 8779?8784 (1998).
Saitoh, S. et al. The four distal tyrosines are required for LAT-dependent signaling in FcεRI-mediated mast cell activation. J. Exp. Med. 198, 831?843 (2003).
Beaven, M. A. & Metzger, H. Signal transduction by Fc receptors: the FcεRI case. Immunol. Today 14, 222?226 (1993).
Ozawa, K. et al. Ca2+-dependent and Ca2+-independent isozymes of protein kinase C mediate exocytosis in antigen-stimulated rat basophilic RBL-2H3 cells. Reconstitution of secretory responses with Ca2+ and purified isozymes in washed permeabilized cells. J. Biol. Chem. 268, 1749?1756 (1993).
Hoth, M. & Penner, R. Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature 355, 353?356 (1992).
Wilde, J. I. & Watson, S. P. Regulation of phospholipase C γ isoforms in hematopoietic cells. Why one, not the other? Cell. Signal. 13, 691?701 (2001).
Barker, S. A., Caldwell, K. K., Pfeiffer, J. R. & Wilson, B. S. Wortmannin-sensitive phosphorylation, translocation, and activation of PLC-γ1, but not PLC-γ2, in antigen-stimulated RBL-2H3 mast cells. Mol. Biol. Cell 9, 483?496 (1998).
Tkaczyk, C., Beaven, M. A., Brachman, S. M., Metcalfe, D. D. & Gilfillan, A. M. The phospholipase Cγ-dependent pathway of FcεRI-mediated mast cell activation is regulated independently of phosphatidylinositol 3-kinase. J. Biol. Chem. 278, 48474?48484 (2003).
Ji, Q. et al. Essential role of the tyrosine kinase substrate phospholipase C-γ1 in mammalian growth and development. Proc. Natl Acad. Sci. USA 94, 2999?3003 (1997).
Wang, D. et al. Phospholipase Cγ2 is essential in the functions of B cell and several Fc receptors. Immunity 13, 25?35 (2000).
Choi, O. H. et al. Antigen and carbachol mobilize calcium by similar mechanisms in a transfected mast cell line (RBL-2H3 cells) that expresses m1 muscarinic receptors. J. Immunol. 151, 5586?5595 (1993).
Chang, E. Y. et al. Functional effects of overexpression of protein kinase C-α, -β, -δ, -ε, and -η in the mast cell line RBL-2H3. J. Immunol. 159, 2624?2632 (1997).
Pivniouk, V. I. et al. SLP-76 deficiency impairs signaling via the high-affinity IgE receptor in mast cells. J. Clin. Invest. 103, 1737?1743 (1999).
Manetz, T. S. et al. Vav1 regulates phospholipase Cγ activation and calcium responses in mast cells. Mol. Cell. Biol. 21, 3763?3774 (2001).
Jabril-Cuenod, B. et al. Syk-dependent phosphorylation of Shc. A potential link between FcεRI and the Ras/mitogen-activated protein kinase signaling pathway through SOS and Grb2. J. Biol. Chem. 271, 16268?16272 (1996).
Rossman, K. L., Der, C. & Sondek, J. GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors. Nature Rev. Mol. Cell Biol. 6, 167?180 (2005).
Teramoto, H., Salem, P., Robbins, K. C., Bustelo, X. R. & Gutkind, J. S. Tyrosine phosphorylation of the Vav proto-oncogene product links FcεRI to the Rac1?JNK pathway. J. Biol. Chem. 272, 10751?10755 (1997).
Hata, D. et al. Bruton's tyrosine kinase-mediated interleukin-2 gene activation in mast cells. Dependence of the c-Jun N-terminal kinase activation pathway. J. Biol. Chem. 273, 10979?10987 (1998).
Wu, C. C., Hsu, S. C., Shih, H. M. & Lai, M. Z. Nuclear factor of activated T cells is a target of p38 mitogen-activated protein kinase in T cells. Mol. Cell. Biol. 23, 6442?6454 (2003).
Marquadt, D. L. & Walker, L. L. Dependence of mast cell IgE-mediated cytokine production on nuclear factor-κB activity. J. Allergy Clin. Immunol. 105, 500?505 (2000).
Pelletier, C. et al. FcεRI-mediated induction of TNF-α gene expression in the RBL-2H3 mast cell line: regulation by a novel NF-κB-like nuclear binding complex. J. Immunol. 161, 4768?4776 (1998).
Razin, E., Szallasi, Z., Kazanietz, M. G., Blumberg, P. M. & Rivera, J. Protein kinase C-β and C-ε link the mast cell high-affinity receptor for IgE to the expression of c-fos and c-jun. Proc. Natl Acad. Sci. USA 91, 7722?7726 (1994).
Hao, S., Kurosaki, T. & August, A. Differential regulation of NFAT and SRF by the B cell receptor via a PLCγ?Ca2+-dependent pathway. EMBO J. 22, 4166?4177 (2003).
Ra, C., Jouvin, M. H. & Kinet, J. P. Complete structure of the mouse mast cell receptor for IgE (FcεRI) and surface expression of chimeric receptors (rat?mouse?human) on transfected cells. J. Biol. Chem. 264, 15323?15327 (1989).
Takai, T., Li, M., Sylvestre, D. L., Clynes, R. & Ravetch, J. V. FcγR γ chain deletion results in pleiotropic effector cell defects. Cell 76, 519?529 (1994).
Repetto, B. et al. Functional contribution of the FcεRIα and FcεRIγ subunit domains in FcεRI-mediated signaling in mast cells. J. Immunol. 156, 4876?4883 (1996).
Dombrowicz, D., Flamand, V., Brigman, K. K., Koller, B. H. & Kinet, J. P. Abolition of anaphylaxis by targeted disruption of the high affinity immunoglobulin E receptor α chain gene. Cell 75, 969?976 (1993).
Dombrowicz, D. et al. Allergy-associated FcRβ is a molecular amplifier of IgE- and IgG-mediated in vivo responses. Immunity 8, 517?529 (1998). This study describes the role of the FcεRI β-chain as an amplifier of FcεRI γ-chain-regulated signalling pathways.
Gu, H. et al. Essential role for Gab2 in the allergic response. Nature 412, 186?190 (2001). This study was the first to show that GAB2 is an essential mediator of PI3K activation in antigen-challenged mast cells.
Vanhaesebroeck, B. et al. Synthesis and function of 3-phosphorylated inositol lipids. Annu. Rev. Biochem. 70, 535?602 (2001).
Tkaczyk, C., Iwaki, S., Metcalfe, D. D. & Gilfillan, A. M. Roles of adaptor molecules in mast cell activation. Chem. Immunol. Allergy 87, 43?58 (2005).
Barker, S. A. et al. Wortmannin blocks lipid and protein kinase activities associated with PI3-kinase and inhibits a subset of responses induced by FcεRI cross-linking. Mol. Biol. Cell 6, 1145?1158 (1995).
Ali, K. et al. Essential role for the p110δ phosphoinositide 3-kinase in the allergic response. Nature 431, 1007?1011 (2004).
Hata, D. et al. Involvement of Bruton's tyrosine kinase in FcεRI-dependent mast cell degranulation and cytokine production. J. Exp. Med. 187, 1235?1247 (1998).
Saito, K. et al. Btk regulates PtdIns-4,5-P2 synthesis: importance for calcium signaling and PI3K activity. Immunity 19, 669?678 (2003).
Urtz, N. et al. Early activation of sphingosine kinase in mast cells and recruitment to FcεRI are mediated by its interaction with Lyn kinase. Mol. Cell. Biol. 24, 8765?8777 (2004).
Baumruker, T. & Prieschl, E. E. The role of sphingosine kinase in the signaling initiated at the high-affinity receptor for IgE (FcεRI) in mast cells. Int. Arch. Allergy Immunol. 122, 85?90 (2000).
Olivera, A. & Rivera, J. Sphingolipids and the balancing of immune cell function: lessons from the mast cell. J. Immunol. 174, 1153?1158 (2005).
Jolly, P. S. et al. Transactivation of sphingosine-1-phosphate receptors by FcεRI triggering is required for normal mast cell degranulation and chemotaxis. J. Exp. Med. 199, 959?970 (2004).
Melendez, A. J. & Khaw, A. K. Dichotomy of Ca2+ signals triggered by different phospholipid pathways in antigen stimulation of human mast cells. J. Biol. Chem. 277, 17255?17262 (2002).
Choi, O. H., Kim, J. H. & Kinet, J. P. Calcium mobilization via sphingosine kinase in signalling by the FcεRI antigen receptor. Nature 380, 634?636 (1996).
Lin, P. Y., Wiggan, G. A. & Gilfillan, A. M. Activation of phospholipase D in a rat mast (RBL 2H3) cell line. A possible unifying mechanism for IgE-dependent degranulation and arachidonic acid metabolite release. J. Immunol. 146, 1609?1616 (1991).
Cissel, D. S., Fraundorfer, P. F. & Beaven, M. A. Thapsigargin-induced secretion is dependent on activation of a cholera toxin-sensitive and phosphatidylinositol-3-kinase-regulated phospholipase D in a mast cell line. J. Pharmacol. Exp. Ther. 285, 110?118 (1998).
Stephens, L. et al. Protein kinase B kinases that mediate phosphatidylinositol 3,4,5-trisphosphate-dependent activation of protein kinase B. Science 279, 710?714 (1998).
Kitaura, J. et al. Akt-dependent cytokine production in mast cells. J. Exp. Med. 192, 729?740 (2000).
Jascur, T., Gilman, J. & Mustelin, T. Involvement of phosphatidylinositol 3-kinase in NFAT activation in T cells. J. Biol. Chem. 272, 14483?14488 (1997).
Laffargue, M. et al. Phosphoinositide 3-kinase γ is an essential amplifier of mast cell function. Immunity 16, 441?451 (2002). This study shows that the A 3 adenosine receptor uses PI3K to potentiate FcεRI-mediated mast-cell activation.
Galli, S. J., Tsai, M. & Wershill, B. K. The c-kit receptor, stem cell factor, and mast cells: what each is teaching us about the others. Am. J. Pathol. 142, 965?974 (1993).
Coleman, J. W., Holliday, M. R., Kimber, I., Zsebo, K. M. & Galli, S. J. Regulation of mouse peritoneal mast cell secretory function by stem cell factor, IL-3 and IL-4. J. Immunol. 150, 556?562 (1993).
Columbo, M. et al. The human recombinant c-kit receptor ligand, rhSCF, induces mediator release from human cutaneous mast cells and enhances IgE-dependent mediator release from both skin mast cells and peripheral blood basophils. J. Immunol. 149, 599?608 (1992).
Bischoff, S. C. & Dahinden, C. A. c-kit ligand: a unique potentiator of mediator release by human lung mast cells. J. Exp. Med. 175, 237?244 (1992).
Taylor, A. M., Galli, S. J. & Coleman, J. W. Stem-cell factor, the kit ligand, induces direct degranulation of rat peritoneal mast cells in vitro and in vivo: dependence of the in vitro effect on period of culture and comparisons of stem-cell factor with other mast cell-activating agents. Immunology 86, 427?433 (1995).
Ishizuka, T. et al. Stem cell factor augments FcεRI-mediated TNF-α production and stimulates MAP kinases via a different pathway in MC/9 mast cells. J. Immunol. 161, 3624?3630 (1998).
Ishizuka, T. et al. Mitogen-activated protein kinase activation through FcεRI and stem cell factor receptor is differentially regulated by phosphatidylinositol 3-kinase and calcineurin in mouse bone marrow-derived mast cells. J. Immunol. 162, 2087?2094 (1999).
Hundley, T. R. et al. Kit and FcεRI mediate unique and convergent signals for release of inflammatory mediators from human mast cells. Blood 104, 2410?2417 (2004).
Miyazaki, D. et al. Macrophage inflammatory protein-1α as a costimulatory signal for mast cell-mediated immediate hypersensitivity reaction. J. Clin. Invest. 115, 434?442 (2005).
Molon, B. et al. T cell costimulation by chemokine receptors. Nature Immunol. 6, 465?471 (2005). References 98 and 99 describe that chemokines might be important co-stimulatory signals in vivo for mast cells and T cells, respectively.
Prieschl, E. E., Csonga, R., Novotny, V., Kikuchi, G. E. & Baumruker, T. The balance between sphingosine and sphingosine-1-phosphate is decisive for mast cell activation after FcεRI triggering. J. Exp. Med. 190, 1?8 (1999).
Venkatesha, R. T., Thangam, E. B., Zaidi, A. K. & Ali, H. Distinct regulation of C3a-induced MCP-1/CCL2 and RANTES/CCL5 production in human mast cells by extracellular signal regulated kinase and PI-3 kinase. Mol. Immunol. 42, 581?587 (2005).
Woolhiser, M. R., Brockow, K. & Metcalfe, D. D. Activation of human mast cells by aggregated IgG through FcγRI: additive effects of C3a. Clin. Immunol. 110, 172?180 (2004).
Metcalfe, D. D. in Middleton's Allergy: Principles and Practice 6th edn (eds Adkinson, N. F. Jr et al.) 1523?1535 (Mosby, New York, 2003).
Fozard, J. R. The case for a role for adenosine in asthma: almost convincing? Curr. Opin. Pharmacol. 3, 264?269 (2003).
Segal, D. M., Taurog, J. D. & Metzger, H. Dimeric immunoglobulin E serves as a unit for mast cell degranulation. Proc. Natl Acad. Sci. USA 74, 2993?2998 (1977).
Gordon, J. R. & Galli, S. J. Release of both preformed and newly synthesized TNF-α/cachectin by mouse mast cells stimulated via FcεRI. A mechanism for the sustained action of mast cell-derived TNF-α during IgE-dependent biological response. J. Exp. Med. 174, 103?107 (1991).
Okayama, Y., Hagaman, D. D. & Metcalfe, D. D. A comparison of mediators released or generated by IFN-γ-treated human mast cells following aggregation of FcγRI or FcεRI. J. Immunol. 166, 4705?4712 (2001).
Okayama, Y., Tkaczyk, C., Metcalfe, D. D. & Gilfillan, A. M. Comparison of FcεRI- and FcγRI-mediated degranulation and TNF-α synthesis in human mast cells: selective utilization of phosphatidylinositol-3-kinase for FcεRI-induced degranulation. Eur. J. Immunol. 33, 1450?1459 (2003).
Latour, S., Bonnerot, C., Fridman, W. H. & Daeron, M. Induction of TNF-α production by mast cells via FcγR: role of the FcγRIII γ subunit. J. Immunol. 149, 2155?2162 (1992).
Katz, H. R. & Lobell, R. B. Expression and function of FcγR in mouse mast cells. Int. Arch. Allergy Immunol. 107, 76?78 (1995).
Price, K. S. et al. CC chemokine receptor 3 mobilizes to the surface of human mast cells and potentiates immunoglobulin E-dependent generation of interleukin 13. Am. J. Respir. Cell Mol. Biol. 28, 420?427 (2003).
Gebhart, T. et al. Cultured human intestinal mast cells express functional IL-3 receptors and respond to IL-3 by enhancing growth and IgE receptor-dependent mediator release. Eur. J. Immunol. 32, 2308?2316 (2002).
Ryan, J. J. et al. IL-4 inhibits mouse mast cell FcεRI expression through a STAT6-dependent mechanism. J. Immunol. 161, 6915?6923 (1998).
Chong, H. J. et al. IL-4 selectively enhances FcγRIII expression and signaling on mouse mast cells. Cell. Immunol. 224, 65?73 (2003).
Bischoff, S. C. et al. IL-4 enhances proliferation and mediator release in mature human mast cells. Proc. Natl Acad. Sci. USA 96, 8080?8085 (1999).
Ochi, H., De Jesus, N. H., Hsieh, F. H., Austen, K. F. & Boyce, J. A. IL-4 and IL-5 prime human mast cells for different profiles of IgE-dependent cytokine production. Proc. Natl Acad. Sci. USA 97, 10509?10513 (2000).
Gillespie, S. R. et al. IL-10 inhibits FcεRI expression in mouse mast cells. J. Immunol. 172, 3181?3188 (2004).
Lin, T. J. & Befus, A. D. Differential regulation of mast cell function by IL-10 and stem cell factor. J. Immunol. 159, 4015?4023 (1997).
Royer, B. et al. Inhibition of IgE-induced activation of human mast cells by IL-10. Clin. Exp. Allergy 31, 694?704 (2001).
Bissonnette, E. Y., Enciso, J. A. & Befus, A. D. TGF-β1 inhibits the release of histamine and TNF-α from mast cells through an autocrine pathway. Am. J. Respir. Cell Mol. Biol. 16, 275?282 (1997).
Costello, P. S. et al. Critical role for the tyrosine kinase Syk in signalling through the high affinity IgE receptor of mast cells. Oncogene 13, 2595?2605 (1996).
Setoguchi, R., Kinashi, T., Sagara, H., Hirosawa, K. & Takatsu, K. Defective degranulation and calcium mobilization of bone-marrow derived mast cells from Xid and Btk-deficient mice. Immunol. Lett. 64, 109?118 (1998).