Mô hình hóa độ ẩm đất tích hợp bằng cách đánh giá các mô hình hồi tiếp Dubois, Oh và phát triển cảm biến IoT cho việc ước lượng độ ẩm tại hiện trường

Amit Kumar Shakya1, Ayushman Ramola1, Anurag Vidyarthi2
1Department of Electronics and Communication Engineering, Sant Longowal Institute of Engineering and Technology (SLIET), Sangrur, India
2Department of Electronics and Communication Engineering, Graphic Era University (GEU), Dehradun, India

Tóm tắt

Nghiên cứu này trình bày chi tiết về các mô hình độ ẩm đất khác nhau, phân tích các mô hình hồi tiếp radar Dubois và Oh sử dụng hệ số hồi tiếp vi sóng phân cực, tức là $${\sigma }_{\mathrm{hh}}$$ , $${\sigma }_{\mathrm{vv}}$$ , $${\sigma }_{\mathrm{hv}}$$ và $${\sigma }_{\mathrm{vh}}$$ và $$\mathrm{IoT}$$ (internet vạn vật) phát triển cảm biến. Các mô hình độ ẩm đất được điều tra dựa trên nhiều yếu tố ảnh hưởng đến hệ số hồi tiếp như góc đến ( $$\theta $$ ), bước sóng ( $$\lambda $$ ), tần số ( $$v$$ ), chiều cao căn bậc hai trung bình ( $$\mathrm{RMS}$$ ), băng tần và độ nhám bề mặt. Mô hình Dubois xem xét hàm lượng độ ẩm dựa trên phân cực ngang-horizontals ( $${\sigma }_{\mathrm{hh}}$$ ) và dọc-dọc ( $${\sigma }_{\mathrm{vv}}$$ ). Tương tự, mô hình Oh kiểm tra hàm lượng độ ẩm cùng với $${\sigma }_{\mathrm{hh}}$$ , $${\sigma }_{\mathrm{vv}}$$ , và phân cực ngang-dọc ( $${\sigma }_{\mathrm{hv}}$$ ). Những mô hình này được điều tra trong khoảng chiều cao RMS dao động từ $$0.42\le \mathrm{RMS}\le 3.0 \mathrm{cm}$$ , góc đến dao động từ $${10}^{^\circ }\le \theta \le {70}^{^\circ }$$ và hằng số điện môi ( $$\in )$$ nằm trong khoảng từ 1–40 cho mô hình Dubois và 3–30 cho mô hình Oh. Một $$\mathrm{IoT}$$ - dựa trên mô hình của cảm biến độ ẩm đất cũng được tạo ra và thử nghiệm cho bốn mẫu đất khác nhau. Cảm biến cung cấp đầu ra dưới dạng giá trị điện áp và độ ẩm (%) cho các mẫu đất khác nhau. Do đó, hành vi của các mô hình độ ẩm đất trong các điều kiện độ ẩm khác nhau được phân tích và xem xét trong công trình này.

Từ khóa

#độ ẩm đất #mô hình hóa #cảm biến IoT #mô hình hồi tiếp Dubois #mô hình hồi tiếp Oh

Tài liệu tham khảo

Abbasnia A, Yousefi N, Mahvi AH, Nabizadeh R, Radfard M (2019) Evaluation of groundwater quality using water quality index and its suitability for assessing water for drinking and irrigation purposes: case study of Sistan and Baluchistan province (Iran). Hum Ecol Risk Assess Int J 25(4):988–1005

Aitkenhead M, Cameron C, Gaskin G, Choisy B, Coull M, Black H (2018) Digital RGB photography and visible-range spectroscopy for soil composition analysis. Geoderma 313(1):265–275

Ayari E, Kassouk Z, Lili-Chabaane Z, Baghdadi N, Bousbih S, Zribi M (2021) Cereal crops soil parameters retrieval using L-Band ALOS-2 and C-band Sentinel-1 sensors. Remote Sens 13(7):1393

Baghdadi N, Choker M, Zribi M, Hajj ME, Paloscia S, Verhoest NE, Mattia F (2016) A new empirical model for radar scattering from bare soil surfaces. Remote Sens 8(11):920

Bai X, He B (2015) Potential of Dubois model for soil moisture retrieval in prairie areas using SAR and optical data. Int J Remote Sens 36(22):5737–5753

Baldoncini M, Albéri M, Bottardi C, Chiarelli E, Raptis KG, Strati V, Mantovani F (2019) Biomass water content effect on soil moisture assessment via proximal gamma-ray spectroscopy. Geoderma 335:69–77. https://doi.org/10.1016/j.geoderma.2018.08.012

Bedenko SV, Ghal-Eh N, Kuskov VA, Vega-Carrillo HR, Vlaskin GN (2021) Neutron beam preparation for soil moisture measurements: Nedis-PHITS and artificial neural networks study. Appl Radiat Isotopes 172:109688. https://doi.org/10.1016/j.apradiso.2021.109688

Brekke C, Jones CE, Skrunes S, Holt B, Espeseth M, Eltoft T (2016) Cross-correlation between polarization channels in sar imagery over oceanographic features. IEEE Geosci Remote Sens Lett 13(7):997–1001

Brocca L, Ciabatta L, Massari C, Camici S, Tarpanelli A (2017) Soil moisture for hydrological applications: open questions and new opportunities. Water 9(2):140

Chen K, Wu T-D, Tsang L, Li Q, Shi J, Fung A (2003) Emission of rough surfaces calculated by the integral equation method with comparison to three-dimensional moment method simulations. IEEE Trans Geosci Remote Sens 41(1):90–101

Choker M, Baghdadi N, Zribi M, Hajj ME, Paloscia S, Verhoest NE, Mattia F (2017) Evaluation of the Oh, Dubois and IEM backscatter models using a large dataset of SAR Data and experimental soil measurements. Water 9(1):38

Djedouani N, Afif S, Dusseaux R (2021) Inversion of electrical and geometrical parameters of a stratified medium from data derived from the small perturbation method and the small slope approximation. Progress Electromagn Res B 94:19–36. https://doi.org/10.2528/PIERB21071305

Dong J, Crow WT, Tobin JK, Cosh HM, Bosch DD, Starks JP, Collins CH (2020) Comparison of microwave remote sensing and land surface modeling for surface soil moisture climatology estimation. Remote Sens Environ 242:111756. https://doi.org/10.1016/j.rse.2020.111756

Dubois P, Zyl JV, Engman T (1995) Measuring soil moisture with imaging radars. IEEE Trans Geosci Remote Sens 33(4):915–926

Edokossi K, Calabia A, Jin S, Molina I (2020) GNSS-reflectometry and remote sensing of soil moisture: a review of measurement techniques, methods, and applications. Remote Sens 12(4):614

Escorihuela MJ, Chanzy A, Wigneron JP, Kerr YH (2010) Effective soil moisture sampling depth of L-band radiometry: a case study. Remote Sens Environ 114(5):995–1001

Ezzahar J, Ouaadi N, Zribi M, Elfarkh J, Aouade G, Khabba S, Chehbouni A (2020) Evaluation of backscattering models and support vector machine for the retrieval of bare soil moisture from Sentinel-1 data. Remote Sens 12(1):72

Fu Y, Taneja P, Lin S, Ji W, Adamchuk V, Daggupati P, Biswas A (2020) Predicting soil organic matter from cellular phone images under varying soil moisture. Geoderma 361:114020. https://doi.org/10.1016/j.geoderma.2019.114020

Gao Y, Liu X, Hou W, Han Y, Wang R, Zhang H (2021) Characteristics of saline soil in extremely arid regions: a case study using GF-3 and ALOS-2 Quad-Pol SAR data in Qinghai. China Remote Sens 13(3):417

Goswami MP, Montazer B, Sarma U (2019) Design and characterization of a fringing field capacitive soil moisture sensor. IEEE Trans Instrum Meas 68(3):913–922

Hagbrink I (2018) Water in agriculture. World Bank, Washington, DC

Hanjra AM, Qureshi ME (2010) Global water crisis and future food security in an era of climate change. Food Policy 35(5):365–377

He H, Turner CN, Aogu K, Dyck M, Feng H, Si B, Wang J (2021) Time and frequency domain reflectometry for the measurement of tree stem water content: a review, evaluation, and future perspectives. Agric for Meteorol 306:108442. https://doi.org/10.1016/j.agrformet.2021.108442

Indiamart (2022). Circuit components Female to Female Jumper Wires. (K. D. L. Enterprises) Retrieved December 25, 2022, from https://www.indiamart.com/proddetail/jumper-wire-9560163055.html

Kelly C, Schipanski ME, Tucker A, Trujillo W, Holman DJ, Obour KA, Fonte JS (2021) Dryland cover crop soil health benefits are maintained with grazing in the US High and Central Plains. Agric Ecosyst Environ 313:107358. https://doi.org/10.1016/j.agee.2021.107358

Kerr YH, Waldteufel P, Wigneron J-P, Martinuzzi J-M, Font J, Berger M (2001) Soil moisture retrieval from space: the soil moisture and ocean salinity (SMOS) mission. IEEE Trans Geosci Remote Sens 39(8):1729–1735

Kim H, Lakshmi V (2018) Use of cyclone global navigation satellite system (CyGNSS) observations for estimation of soil moisture. Geophys Res Lett 45(16):8272–8282

Labarre S, Jacquemoud S, Ferrari C, Delorme A, Derrien A, Grandin R, Jalludin M (2019) Retrieving soil surface roughness with the Hapke photometric model: Confrontation with the ground truth. Remote Sens Environ 225(1):1–15

Li H, Wu J, Perrie W, He Y (2018) Wind Speed Retrieval From Hybrid-Pol Compact Polarization Synthetic Aperture Radar Images. IEEE J Oceanic Eng 43(3):713–724

List, G., Laszlo, S., & Coomes, O. T. (2019). Mitigating risk for floodplain agriculture in Amazonia: a role for index-based flood insurance. Climate and Development, 1–15.

Liu Y, Qian J, Yue H (2020) Combined Sentinel-1A with Sentinel-2A to estimate soil moisture in farmland. IEEE J Sel Top Appl Earth Observ Remote Sens 14:1292–1310. https://doi.org/10.1109/JSTARS.2020.3043628

Long W, Binbin H, Xiaojing B, Minfeng X (2019) Assessment of different vegetation parameters for parameterizing the coupled water cloud model advanced integral equation model for soil moisture retrieval using time series sentinel-1a data. Photogramm Eng Remote Sens 85(1):43–54

Ltd, Mo (2011) Latitude and Longitude Map of Punjab. (MoI) Retrieved February 20, 2022, from https://www.mapsofindia.com/lat_long/punjab/

Ltd, IP (2014) 15000 MAH Syska Power Bank Power Tube. (Sarika International ) Retrieved December 25, 2022, from https://www.indiamart.com/proddetail/15000-mah-syska-power-bank-power-tube-16889537873.html

Ltd., DR (2020). Soil moisture detector sensor module. (Robokit India) Retrieved December 25, 2022, from https://robokits.co.in/sensors/water-moisture/soil-moisture-detector-sensor-module-corrosion-resistance-weather-proof-probe-compatible-with-arduino

Ltd, Mo (2021) Latitude and Longitude. (MoI) Retrieved February 20, 2022, from https://www.mapsofindia.com/lat_long/

Ltd, E1 (2022) Flash Memory Card. (TS2GUSDC) Retrieved December 25, 2022, from https://in.element14.com/transcend/ts2gusdc/card-sd-micro-2gb/dp/2290242

Ltd., SL (2022) India Mart. (Synergy Lightronic) Retrieved December 25, 2022, from https://www.indiamart.com/proddetail/lcd-20-x-4-module-20391127373.html

Ma T, Han L, Liu Q (2021) Retrieving the soil moisture in bare farmland areas using a modified dubois model. Front Earth Sci 9:735958. https://doi.org/10.3389/feart.2021.735958

Maps of India, L (2021) Latitude and Longitude of Sangrur. (MoI) Retrieved February 20, 2022, from https://www.mapsofindia.com/lat_long/punjab/sangrur.html

Margulis SA, McLaughlin D, Entekhabi D, Dunne S (2002) Land data assimilation and estimation of soil moisture using measurements from the Southern Great Plains 1997 Field Experiment. Water Resour Res 38(12):35-1–35-18

Meng Q, Zhang L, Xie Q, Yao S, Chen X, Zhang Y (2018) Combined use of GF-3 and Landsat-8 satellite data for soil moisture retrieval over agricultural areas using artificial neural network. Adv Metrol. https://doi.org/10.1155/2018/9315132

Merwade ZL, Jafarzadegan K (2019) Investigating the role of model structure and surface roughness in generating flood inundation extents using one- and two-dimensional hydraulic models. J Flood Risk Manag 12(1):1–19

Mohammadpour P, Viegas DX, Viegas C (2022) Vegetation mapping with random forest using sentinel 2 and GLCM texture feature—a case study for Lousã, Region Portugal. Remote Sens 14(18):4585

Mukhlisin M, Astuti HW, Wardihani ED, Matlan SJ (2021) Techniques for ground-based soil moisture measurement. Arab J Geosci 14:2032. https://doi.org/10.1007/s12517-021-08263-0

Neelam M, Colliander A, Mohanty BP, Cosh MH, Misra S, Jackson TJ (2020) Multiscale Surface Roughness for Improved Soil Moisture Estimation. IEEE Trans Geosci Remote Sens ( Early Access ) 58:1–13

Notarnicola C, Angiulli M, Posa F (2008) Soil moisture retrieval from remotely sensed data: Neural network approach versus Bayesian method. IEEE Trans Geosci Remote Sens 46(2):547–557

Oh Y (2004) Quantitative retrieval of soil moisture content and surface roughness from multi-polarized radar observations of bare soil surfaces. IEEE Trans Geosci Remote Sens 42(3):596–601

Panciera R, Tanase MA, Lowell K, Walker JP (2014) Evaluation of IEM, Dubois, and Oh radar backscatter models using airborne L-Band SAR. IEEE Trans Geosci Remote Sens 52(8):4966–4979

Pinel N, Bastard CL, Bourlier C (2020) Modeling of EM wave coherent scattering from a rough multilayered medium with the Scalar Kirchhoff approximation for GPR applications. IEEE Trans Geosci Remote Sens 58(3):1654–1664

Prasojo I, Maseleno A, tananeShahu ON (2021) The design of earthquake detector using pendulum swing based on ATMega328. J Robot Control (JRC) 2(3):209–211

Pvt. Ltd, M (2011) Microchip Technology ATmega328 8-Bit AVR MCUs. (Microchip) Retrieved December 25, 2022, from https://www.mouser.in/new/microchip/atmelatmega328/

Qiu J, Crow WT, Wagner W, Zhao T (2019) Effect of vegetation index choice on soil moisture retrievals via the synergistic use of synthetic aperture radar and optical remote sensing. Int J Appl Earth Observ Geoinform 80:47–57. https://doi.org/10.1016/j.jag.2019.03.015

Rao SS, Kumar SD, Das SN, Nagaraju MS, Venugopal MV, Rajankar P, Laghate P (2013) Modified Dubois model for estimating soil moisture with dual polarized SAR data. J Indian Soc Remote Sens 41(4):865–872

Rawat KS, Singh SK (2022) Retrieval of surface roughness over cropped area using modified water cloud model (MWCM), oh model and SAR data. J Indian Soc Remote Sens 15:10. https://doi.org/10.1007/s12524-021-01480-w

Ren Y, Zhu M, Ren Q, Chen YP, Liu Y (2021) Efficient electromagnetic modeling of multidomain planar layered medium by surface integral equation. IEEE Trans Microw Theory Tech 69(8):3635–3644

Scharf PA, Iberle J, Mantz H, Walter T, Waldschrnidt C (2018) Multiband microwave sensing for surface roughness classification. IEEE/MTT-S International Microwave Symposium-IMS. Philadelphia, PA, USA

Singh G, Panda RK, Mohanty BP (2019) Spatiotemporal analysis of soil moisture and optimal sampling design for regional-scale soil moisture estimation in a tropical watershed of India. Water Resour Res 55(3):2057–2078

Singh A, Gaurav K, Meena GK, Kumar S (2020) Estimation of soil moisture applying modified Dubois model to sentinel-1; a regional study from Central India. Remote Sens 12(14):2266

Situmorang M, Aritonang EF (2021) Designing motorcycle safety system using fingerprint sensor, SMS gateway, and GPS tracker based on ATMega328. J Technomater Phys 3(1):1–6

Su C, Cao Y (2021) Research on inversion of soil moisture in karst area based on full-polarization SAR data. IEEE Access 9:117512–117519. https://doi.org/10.1109/ACCESS.2021.3106768

Teixeira J, Santos RC (2021) Exploring the applicability of low-cost capacitive and resistive water content sensors on compacted soils. Geotech Geol Eng 39:2969–2983. https://doi.org/10.1007/s10706-020-01672-0

Thanabalan P, Vidhya R, Kankara R (2021) Soil moisture estimation using RISAT-1 and SENTINEL-1 data using modified Dubois model in comparison with averaged NDVI. Geocarto Int. https://doi.org/10.1080/10106049.2021.2003443

Wagner JM, Wendelin T (2018) SolarPILOT: a power tower solar field layout and characterization tool. Sol Energy 171:185–196. https://doi.org/10.1016/j.solener.2018.06.063

Wallace JS (2000) Increasing agricultural water use efficiency to meet future food production. Agr Ecosyst Environ 82(1–3):105–119

Wang L, Qu JJ (2009) Satellite remote sensing applications for surface soil moisture monitoring: a review. Front Earth Sci China 3(1):237–247

Xaver A, Zappa L, Rab G, Pfeil I, Vreugdenhil M, Hemment D, Dorigo WA (2020) Evaluating the suitability of the consumer low-cost Parrot Flower Power soil moisture sensor for scientific and environmental applications. Geosci Instrum Method Data Syst 9:117–139. https://doi.org/10.5194/gi-9-117-2020

Yang Y, Chen K-S (2019) Full-polarization bistatic scattering from an inhomogeneous rough surface. IEEE Trans Geosci Remote Sens 57(9):6434–6446

Zhang L, Lv X, Chen Q, Sun G, Yao J (2020) Estimation of surface soil moisture during corn growth stage from SAR and optical data using a combined scattering model. Remote Sens 12(11):1844

Zheng W-J, He Z, Ding D-Z, Chen FD-S (2022) An advanced two-scale model of EM backscattering from rough surfaces. Eng Anal Bound Elem 135:315–321. https://doi.org/10.1016/j.enganabound.2021.11.028

Zhu W, Tan KS, Porth L (2019) Agricultural insurance ratemaking: development of a new premium principle. N Am Actuarial J 23(4):512–534

Zhu H.-H, Huang Y-X, Huang H, Garg A, Mei G-X, Song H-H (2022). Development and evaluation of arduino-based automatic irrigation system for regulation of soil moisture. Int J Geosynth Ground Eng 8(13)

Zreda M, Shuttleworth WJ, Zeng X, Zweck C, Desilets D, Franz T, Rosolem R (2012) COSMOS: the cosmic-ray soil moisture observing system. Hydrol Earth Syst Sci 16(11):4079–4099

Zucco G, Brocca L, Moramarco T, Morbidelli R (2014) Influence of land use on soil moisture spatial–temporal variability and monitoring. J Hydrol 516(1):193–199