Integrated metal organic framework/ionic liquid-based composite membrane for CO2 separation
Tài liệu tham khảo
Friedlingstein, 2021, Global Carbon Budget 2021, Earth Syst. Sci. Data
Olajire, 2010, CO2 capture and separation technologies for end-of-pipe applications - A review, Energy, 35, 2610, 10.1016/j.energy.2010.02.030
Makertihartha, 2017, Post combustion CO2 capture using zeolite membrane, 1818, 10.1063/1.4979941
Adi Kurnia, 2022, Development of quantitative structure-property relationship to predict the viscosity of deep eutectic solvent for CO2 capture using molecular descriptor, J. Mol. Liq., 347, 10.1016/j.molliq.2021.118239
M. Zunita, I.G.B.N. Makertihartha, I.G. Wenten, R. Irawanti, and N. Prasetya, “Graphene oxide- inorganic composite membrane : graphene oxide- inorganic composite membrane: a review,” 2018, doi: 10.1088/1757-899X/395/1/012005.
Zunita, 2021, Ionic liquid membrane for carbon capture and separation ionic liquid membrane for carbon capture and separation, Sep. Purif. Rev., 00, 1
Wang, 2021, A mechanically enhanced metal-organic framework/PDMS membrane for CO2/N2 separation, React. Funct. Polym., 160
Park, 2017, Maximizing the right stuff: the trade-off between membrane permeability and selectivity, Science (80-.), 356, 1138, 10.1126/science.aab0530
Zunita, 2021, Graphene oxide-based nanofiltration for Hg removal from wastewater: a mini review, Membranes, 11, 10.3390/membranes11040269
M. Zunita, R. Irawanti, T. Agustini, and G. Lugito, “Graphene oxide (GO) membrane in removing heavy metals from wastewater: a review,” vol. 82, no. February, pp. 415–420, 2020, doi: 10.3303/CET2082070.
Makertihartha, 2017, Graphene based nanofiltration for mercury removal from aqueous solutions, Adv. Sci. Lett., 23, 10.1166/asl.2017.8802
Wenten, 2019, Simultaneous clarification and dehydration of crude palm oil using superhydrophobic polypropylene membrane, J. Food Eng., 248, 23, 10.1016/j.jfoodeng.2018.12.010
Elhenawy, 2020, Metal-organic frameworks as a platform for CO2 capture and chemical processes: adsorption, membrane separation, catalytic-conversion, and electrochemical reduction of CO2, Catalysts, 10, 1, 10.3390/catal10111293
Guo, 2020, Ionic liquid tuning nanocage size of MOFs through a two-step adsorption/infiltration strategy for enhanced gas screening of mixed-matrix membranes, J. Memb. Sci., 605
Lian, 2019, Carbon dioxide captured by metal organic frameworks and its subsequent resource utilization strategy: a review and prospect, J. Nanosci. Nanotechnol., 19, 3059, 10.1166/jnn.2019.16647
Chen, 2014, Metal-organic frameworks: rise of the ligands, Chem. Mater., 26, 4322, 10.1021/cm501657d
Li, 2018, Recent advances in gas storage and separation using metal–organic frameworks, Mater. Today, 21, 108, 10.1016/j.mattod.2017.07.006
Belmabkhout, 2016, Low concentration CO2 capture using physical adsorbents: are metal-organic frameworks becoming the new benchmark materials?, Chem. Eng. J., 296, 386, 10.1016/j.cej.2016.03.124
Lee, 2009, Metal-organic framework materials as catalysts, Chem. Soc. Rev., 38, 1450, 10.1039/b807080f
Erucar, 2017, Computational investigation of metal organic frameworks for storage and delivery of anticancer drugs, J. Mater. Chem. B, 5, 7342, 10.1039/C7TB01764B
Yu, 2017, Natural gas dehydration with ionic liquids, Energy Fuels, 31, 1429, 10.1021/acs.energyfuels.6b02920
Zunita, 2020, The performance of 1,3-dipropyl-2-(2-propoxyphenyl)-4,5-diphenylimidazolium iodide based ionic liquid for biomass conversion into levulinic acid and formic acid, Bioresour. Technol., 315, 10.1016/j.biortech.2020.123864
Makertihartha, 2017, Solvent extraction of gold using ionic liquid based process, 1805, 10.1063/1.4974419
Zunita, 2020, Corrosion inhibition performances of imidazole derivatives-based new ionic liquids on carbon steel in brackish water, Appl. Sci., 10, 7069, 10.3390/app10207069
Makertihartha, 2017, Supported ionic liquid membrane in membrane reactor, 1788, 10.1063/1.4968391
Zunita, 2021, A concise and efficient synthesis of novel alkylated 2-(2-hydroxyphenyl)-4,5-diphenylimidazole-based ionic liquids using the MAOS technique, Org. Prep. Proced. Int., 53, 151, 10.1080/00304948.2020.1870397
Yao, 2019, Multifunctional periodic mesoporous organosilica supported dual imidazolium ionic liquids as novel and efficient catalysts for heterogeneous Knoevenagel condensation, J. Saudi Chem. Soc., 23, 740, 10.1016/j.jscs.2019.01.001
Anastas, 2007, 녹색 화학 녹색 화학 (Green Chemistry) (Green Chemistry, Encyclopedia of Toxicology, 12, 810
Zhang, 2012, Carbon capture with ionic liquids: overview and progress, Energy Environ. Sci., 5, 6668, 10.1039/c2ee21152a
Polat, 2019, Unlocking CO2 separation performance of ionic liquid/CuBTC composites: combining experiments with molecular simulations, Chem. Eng. J., 373, 1179, 10.1016/j.cej.2019.05.113
Khan, 2014, Ionic liquids supported on metal-organic frameworks: remarkable adsorbents for adsorptive desulfurization, Chem. A Eur. J., 20, 376, 10.1002/chem.201304291
Hudiono, 2010, A three-component mixed-matrix membrane with enhanced CO2 separation properties based on zeolites and ionic liquid materials, J. Memb. Sci., 350, 117, 10.1016/j.memsci.2009.12.018
Li, 2016, Simultaneous enhancement of mechanical properties and CO2 selectivity of ZIF-8 mixed matrix membranes: interfacial toughening effect of ionic liquid, J. Memb. Sci., 511, 130, 10.1016/j.memsci.2016.03.050
Fujie, 2014, Introduction of an ionic liquid into the micropores of a metal-organic framework and its anomalous phase behavior, Angew. Chem. Int. Ed., 53, 11302, 10.1002/anie.201406011
Lan, 2019, Large-scale computational assembly of ionic liquid/MOF composites: synergistic effect in the wire-tube conformation for efficient CO2/CH4 separation, J. Mater. Chem. A, 7, 12556, 10.1039/C9TA01752F
Zeeshan, 2021, Doubling CO2/N2 separation performance of CuBTC by incorporation of 1-n-ethyl-3-methylimidazolium diethyl phosphate, Microporous Mesoporous Mater., 316, 10.1016/j.micromeso.2021.110947
Rangaraj, 2020, Metal organic framework — based mixed matrix membranes for carbon dioxide separation: recent advances and future directions, Front. Chem., 8, 1
Torralba-Calleja, 2014, CO2 capture in ionic liquids: a review of solubilities and experimental methods,” Carbon Capture Storage CO2 Manag, Technol, 2013, 325
Earle, 2002, Ionic liquids: green solvents for the future, ACS Symp. Ser., 819, 10, 10.1021/bk-2002-0819.ch002
A. J. Greer, J. Jacquemin, and C. Hardacre, Industrial applications of ionic liquids, vol. 25, no. 21. 2020.
Troncoso, 2006, Thermodynamic properties of imidazolium-based ionic liquids: densities, heat capacities, and enthalpies of fusion of [bmim][PF6] and [bmim][NTf2], J. Chem. Eng. Data, 51, 1856, 10.1021/je060222y
Domańska, 2019, Physico-chemical properties of ionic liquids: density, viscosity, density at high pressure, surface tension, octan-1-ol/water partition coefficients and thermodynamic models, Fluid Ph. Equilibria, 502
Ben Ghanem, 2015, Studies on the physicochemical properties of ionic liquids based on 1-octyl-3-methylimidazolium amino acids, J. Chem. Eng. Data, 60, 1756, 10.1021/je501162f
Kosmulski, 2004, Thermal stability of low temperature ionic liquids revisited, Thermochim. Acta, 412, 47, 10.1016/j.tca.2003.08.022
Perissi, 2006, High temperature corrosion properties of ionic liquids, Corros. Sci., 48, 2349, 10.1016/j.corsci.2006.06.010
Mehrkesh, 2016, Life-cycle perspectives on aquatic ecotoxicity of common ionic liquids, Environ. Sci. Technol., 50, 6814, 10.1021/acs.est.5b04721
Aghaie, 2018, A systematic review on CO2 capture with ionic liquids: current status and future prospects, Renew. Sustain. Energy Rev., 96, 502, 10.1016/j.rser.2018.07.004
Hayes, 2015, Structure and nanostructure in ionic liquids, Chem. Rev., 115, 6357, 10.1021/cr500411q
Ramdin, 2014, Solubility of CO2 and CH4 in Ionic Liquids: Ideal CO2 /CH4 Selectivity, Ind. Eng. Chem. Res., 53, 15427, 10.1021/ie4042017
Yokozeki, 2008, Physical and chemical absorptions of carbon dioxide in room-temperature ionic liquids, J. Phys. Chem. B, 112, 16654, 10.1021/jp805784u
Blanchard, 2001, High-pressure phase behavior of ionic liquid/CO2 systems, J. Phys. Chem. B, 105, 2437, 10.1021/jp003309d
Sánchez, 2008, Functionalized ionic liquids absorption solvents for carbon dioxide and olefin separation, no, 2008
Muldoon, 2007, Improving carbon dioxide solubility in ionic liquids, J. Phys. Chem. B, 111, 9001, 10.1021/jp071897q
Zhang, 2020, Solubility predictions through LSBoost for supercritical carbon dioxide in ionic liquids, New J. Chem., 44, 20544, 10.1039/D0NJ03868G
Kamps, 2003, Solubility of CO2 in the ionic liquid [bmim][PF6], J. Chem. Eng. Data, 48, 746, 10.1021/je034023f
Urukova, 2005, Solubility of CO2, CO, and H2 in the ionic liquid [bmim][PF6] from Monte Carlo simulations, J. Phys. Chem. B, 109, 12154, 10.1021/jp050888j
Almeida, 2012, Thermophysical properties of five acetate-based ionic liquids, J. Chem. Eng. Data, 57, 3005, 10.1021/je300487n
Revelli, 2010, High carbon dioxide solubilities in imidazolium-based ionic liquids and in poly(ethylene glycol) dimethyl ether, J. Phys. Chem. B, 114, 12908, 10.1021/jp1057989
Qiao, 2012, PVAm–PIP/PS composite membrane with high performance for CO2/N2 separation, AIChE J., 59, 215
Kurnia, 2009, Thermodynamic properties of CO2 absorption in hydroxyl ammonium ionic liquids at pressures of (100-1600) kPa, J. Chem. Thermodyn., 41, 1069, 10.1016/j.jct.2009.04.003
Yuan, 2007, Solubilities of CO2 in hydroxyl ammonium ionic liquids at elevated pressures, Fluid Ph. Equilibria, 257, 195, 10.1016/j.fluid.2007.01.031
Anderson, 2007, Solubility of CO2, CH4, C2H6, C2H4, O2, and N2 in 1-Hexyl-3-methylpyridinium Bis(trifluoromethylsulfonyl)imide: comparison to other ionic liquids, Acc. Chem. Res., 40, 1208, 10.1021/ar7001649
Carvalho, 2010, High carbon dioxide solubilities in trihexyltetradecylphosphonium-based ionic liquids, J. Supercrit. Fluids, 52, 258, 10.1016/j.supflu.2010.02.002
Wappel, 2010, Ionic liquids for post-combustion CO2 absorption, Int. J. Greenh. Gas Control, 4, 486, 10.1016/j.ijggc.2009.11.012
Hamedi, 2020, Methane solubility in ionic liquids: comparison of cubic-plus-association and modified Sanchez-Lacombe equation of states, Chem. Phys. Lett., 738
Finotello, 2008, Ideal gas solubilities and solubility selectivities in a binary mixture of room-temperature ionic liquids, J. Phys. Chem. B, 112, 2335, 10.1021/jp075572l
Lee, 2016, Solubility of hydrogen sulfide and methane in ionic liquids: 1-ethy-3-methylimidazolium trifluoromethanesulfonate and 1-butyl-1-methylpyrrolidinium trifluoromethanesulfonate, Korean Chem. Eng. Res., 54, 213, 10.9713/kcer.2016.54.2.213
Kurnia, 2020, Solubility of methane in alkylpyridinium-based ionic liquids at temperatures between 298.15 and 343.15 K and pressures up to 4 MPa, J. Chem. Eng. Data, 65, 4642, 10.1021/acs.jced.0c00493
Almantariotis, 2012, Absorption of carbon dioxide, nitrous oxide, ethane and nitrogen by 1-alkyl-3-methylimidazolium (Cnmim, n = 2,4,6) tris(pentafluoroethyl) trifluorophosphate ionic Liquids (eFAP), J. Phys. Chem. B, 116, 7728, 10.1021/jp304501p
Ko, 2008, Toilet house, Space, 482, 48
Stevanovic, 2013, Solubility of carbon dioxide, nitrous oxide, ethane, and nitrogen in 1-butyl-1-methylpyrrolidinium and trihexyl(tetradecyl)phosphonium tris(pentafluoroethyl)trifluorophosphate (eFAP) ionic liquids, J. Chem. Thermodyn., 59, 65, 10.1016/j.jct.2012.11.010
A. Maiti, “Theoretical screening of ionic liquid solvents for carbon capture,” pp. 628–631, 2009, doi: 10.1002/cssc.200900086.
Sairi, 2015, Low pressure solubilities of CO2 in guanidinium trifluoromethanesulfonate-MDEA systems, Fluid Ph. Equilibria, 385, 79, 10.1016/j.fluid.2014.11.009
Ramdin, 2012, State-of-the-art of CO2 capture with ionic liquids, Ind. Eng. Chem. Res., 51, 8149, 10.1021/ie3003705
Elhenawy, 2020, Key applications and potential limitations of ionic liquid membranes in the gas separation process of CO2, CH4, N2, H2 or mixtures of these gases from various gas streams, Molecules, 25, 10.3390/molecules25184274
Sasikumar, 2018, Recent progress in ionic liquid membranes for gas separation, J. Mol. Liq., 266, 330, 10.1016/j.molliq.2018.06.081
Scovazzo, 2009, Long-term, continuous mixed-gas dry fed CO2/CH4 and CO2/N2 separation performance and selectivities for room temperature ionic liquid membranes, J. Memb. Sci., 327, 41, 10.1016/j.memsci.2008.10.056
Liu, 2016, CO2 separation by supported ionic liquid membranes and prediction of separation performance, Int. J. Greenh. Gas Control, 53, 79, 10.1016/j.ijggc.2016.07.041
Yan, 2019, Ionic liquids combined with membrane separation processes: a review, Sep. Purif. Technol., 222, 230, 10.1016/j.seppur.2019.03.103
Mannan, 2017, Synthesis, characterization, and CO2 separation performance of polyether sulfone/[EMIM][Tf2N] ionic liquid-polymeric membranes (ILPMs), J. Ind. Eng. Chem., 54, 98, 10.1016/j.jiec.2017.05.022
Kim, 2011, Study on immobilized liquid membrane using ionic liquid and PVDF hollow fiber as a support for CO2/N2 separation, J. Memb. Sci., 372, 346, 10.1016/j.memsci.2011.02.025
Chen, 2012, PVDF/ionic liquid polymer blends with superior separation performance for removing CO2 from hydrogen and flue gas, Int. J. Hydrog. Energy, 37, 11796, 10.1016/j.ijhydene.2012.05.111
Tomé, 2016, Ionic liquid-based materials: a platform to design engineered CO2 separation membranes, Chem. Soc. Rev., 45, 2785, 10.1039/C5CS00510H
Zhang, 2017, Synthesis and gas transport properties of poly(ionic liquid) based semi-interpenetrating polymer network membranes for CO2/N2 separation, J. Memb. Sci., 528, 10.1016/j.memsci.2017.01.022
Tomé, 2018, Effect of polymer molecular weight on the physical properties and CO2/N2 separation of pyrrolidinium-based poly(ionic liquid) membranes, J. Memb. Sci., 549, 267, 10.1016/j.memsci.2017.12.019
Suh, 2012, Hydrogen storage in metal-organic frameworks, Chem. Rev., 112, 782, 10.1021/cr200274s
An, 2009, High and selective CO2 uptake in a cobalt adeninate metal−organic framework exhibiting pyrimidine- and amino-decorated pores, J. Am. Chem. Soc., 132, 38, 10.1021/ja909169x
Aniruddha, 2020, MOFs in carbon capture-past, present and future, J. CO2 Util., 42
Choi, 2020, Metal organic frameworks immobilized polyacrylonitrile fiber mats with polyethyleneimine impregnation for CO2 capture, Microporous Mesoporous Mater., 296
Pirzadeh, 2020, CO2 and N2 adsorption and separation using aminated UiO-66 and Cu3(BTC)2: a comparative study, Korean J. Chem. Eng., 37, 513, 10.1007/s11814-019-0433-5
Wang, 2018, Thermal stability of metal-organic frameworks and encapsulation of CuO Nanocrystals for highly active catalysis, ACS Appl. Mater. Interfaces, 10, 9332, 10.1021/acsami.7b17389
M. Mohamedali, D. Nath, and H. Ibrahim, “Review of recent developments in CO2 capture using solid materials : metal organic frameworks (MOFs).”.
Hartanto, 2017, Decolorization of crude terpineol by adsorption, Sep. Sci. Technol., 52, 1967, 10.1080/01496395.2017.1313863
Zunita, 2022, Carbon steel corrosion inhibition activity of tofu associated proteins, Bioresour. Technol. Reports, 17
Zunita, 2012, Investigation of corrosion inhibition activity of 3-butyl-2,4,5-triphenylimidazole and 3-butyl-2-(2-butoxyphenyl)-4,5-diphenylimidazole toward carbon steel in 1% NaCl solution, Int. J. Electrochem. Sci., 7, 3274, 10.1016/S1452-3981(23)13953-8
P. J. Bereciartua et al., “Isoreticular two-dimensional magnetic coordination polymers prepared through pre-synthetic ligand functionalization,” vol. 10, no. October, pp. 1001–1007, 2018, doi: 10.1038/s41557-018-0113-9.
Y. Qin et al., “Hollow mesoporous metal − organic frameworks with enhanced diffusion for highly efficient catalysis,” 2020, doi: 10.1021/acscatal.0c01432.
Wang, 2020, Stimulus-responsive adsorbent materials for CO2 capture and separation, J. Mater. Chem. A, 8, 10519, 10.1039/D0TA01863E
Li, 2017, Magnetic induction framework synthesis: a general route to the controlled growth of metal-organic frameworks, Chem. Mater., 29, 6186, 10.1021/acs.chemmater.7b01803
Sun, 2017, Electric field controlled CO2 capture and CO2/N2 separation on MoS2 monolayers, Nanoscale, 9, 19, 10.1039/C6NR07001A
Ma, 2017, A dynamic three-dimensional covalent organic framework, J. Am. Chem. Soc., 139, 4995, 10.1021/jacs.7b01097
Altintas, 2018, Database for CO2 separation performances of MOFs based on computational materials screening, ACS Appl. Mater. Interfaces, 10, 17257, 10.1021/acsami.8b04600
Yu, 2017, CO2 capture and separations using MOFs: computational and experimental studies, Chem. Rev., 117, 9674, 10.1021/acs.chemrev.6b00626
Altintas, 2016, Computational screening of MOFs for C2H6/C2H4 and C2H6/CH4 separations, Chem. Eng. Sci., 139, 49, 10.1016/j.ces.2015.09.019
Li, 2016, High-throughput screening of metal-organic frameworks for CO2 capture in the presence of water, Langmuir, 32, 10368, 10.1021/acs.langmuir.6b02803
Szczęśniak, 2020, Graphene-containing microporous composites for selective CO2 adsorption, Microporous Mesoporous Mater., 292
Gaikwad, 2019, CO2 capture using amine-functionalized bimetallic MIL-101 MOFs and their stability on exposure to humid air and acid gases, Microporous Mesoporous Mater., 277, 253, 10.1016/j.micromeso.2018.11.001
Lawson, 2019, Amine-functionalized MIL-101 monoliths for CO2 removal from enclosed environments, Energy Fuels, 33, 2399, 10.1021/acs.energyfuels.8b04508
Cao, 2018, UiO-66-NH2/GO composite: synthesis, characterization and CO2 adsorption performance, Materials (Basel), 11, 1, 10.3390/ma11040589
Ullah, 2020, Influence of post-synthetic graphene oxide (GO) functionalization on the selective CO2/CH4 adsorption behavior of MOF-200 at different temperatures; an experimental and adsorption isotherms study, Microporous Mesoporous Mater., 296
Wang, 2020, Enhancement thermal stability and CO2 adsorption property of ZIF-8 by pre-modification with polyaniline, Mater. Res. Express, 7, 10.1088/2053-1591/ab6db3
Abdelhamid, 2020, Zinc hydroxide nitrate nanosheets conversion into hierarchical zeolitic imidazolate frameworks nanocomposite and their application for CO2 sorption, Mater. Today Chem., 15
Mu, 2020, Mechanistic and experimental study of the formation of MoS2/HKUST-1 Core–shell composites on MoS2 quantum dots with an enhanced CO2 adsorption capacity, Ind. Eng. Chem. Res., 59, 5808, 10.1021/acs.iecr.9b06729
Elsabawy, 2019, Synthesis of newly wings like structure non-crystalline Ni þþ -1, 3, 5- CO2 -Capture, J. Mol. Struct., 1177, 255, 10.1016/j.molstruc.2018.09.069
Vismara, 2019, Tuning carbon dioxide adsorption Affinity of Zinc(II) MOFs by mixing Bis(pyrazolate) ligands with N ‑ Containing Tags,” no, Ii
A. Masala et al., “Article CO capture in dry and wet conditions in UTSA-16 metal organic framework,” 2016, doi: 10.1021/acsami.6b13216.
Dhumal, 2016, Molecular interactions of a Cu-based metal-organic framework with a confined imidazolium-based ionic liquid: a combined density functional theory and experimental vibrational spectroscopy study, J. Phys. Chem. C, 120, 3295, 10.1021/acs.jpcc.5b10123
Li, 2019, Metal–organic framework membranes: production, modification, and applications, Prog. Mater. Sci., 100, 21, 10.1016/j.pmatsci.2018.09.003
Kinik, 2017, Ionic liquid/metal–organic framework composites: from synthesis to applications, ChemSusChem, 10, 2842, 10.1002/cssc.201700716
Lin, 2016, Ionic liquids as the MOFs/polymer interfacial binder for efficient membrane separation, ACS Appl. Mater. Interfaces, 8, 32041, 10.1021/acsami.6b11074
Du, 2021, Selective gas adsorption and separation of carbon dioxide in metal-organic frameworks and composites, J. Phys. Conf. Ser., 2021, 10.1088/1742-6596/2021/1/012004
Vega, 2016, Comparative study of MOFs and zeolites for CO2 capture and separation at process conditions, Proceedings of the Abu Dhabi International Petroleum Exhibition and Conference, 2016
Ramezanzadeh, 2020, Development of metal-organic framework (MOF) decorated graphene oxide nanoplatforms for anti-corrosion epoxy coatings, Carbon N. Y., 161, 231, 10.1016/j.carbon.2020.01.082
Zhang, 2017, Nanoconfined ionic liquids, Chem. Rev., 117, 6755, 10.1021/acs.chemrev.6b00509
Ban, 2015, Confinement of ionic liquids in nanocages: tailoring the molecular sieving properties of ZIF-8 for membrane-based CO2 capture, Angew. Chem. Int. Ed., 54, 15483, 10.1002/anie.201505508
Deiko, 2019, New molecular sieve materials: composites based on metal–organic frameworks and ionic liquids, Pet. Chem., 59, 770, 10.1134/S096554411908005X
Xu, 2014, The influence of 1-alkyl-3-methyl imidazolium ionic liquids on a series of cobalt-1,4-benzenedicarboxylate metal-organic frameworks, CrystEngComm, 16, 10649, 10.1039/C4CE01722F
Fujie, 2015, Low temperature ionic conductor: Ionic liquid incorporated within a metal-organic framework, Chem. Sci., 6, 4306, 10.1039/C5SC01398D
Fujie, 2015, Lithium ion diffusion in a metal-organic framework mediated by an ionic liquid, Chem. Mater., 27, 7355, 10.1021/acs.chemmater.5b02986
Koyuturk, 2017, Improving gas separation performance of ZIF-8 by [BMIM][BF4] incorporation: interactions and their consequences on performance, J. Phys. Chem. C, 121, 10370, 10.1021/acs.jpcc.7b00848
Kinik, 2016, [BMIM][PF6] incorporation doubles CO2 selectivity of ZIF-8: elucidation of interactions and their consequences on performance, ACS Appl. Mater. Interfaces, 8, 30992, 10.1021/acsami.6b11087
Abednatanzi, 2017, POM@IL-MOFs-inclusion of POMs in ionic liquid modified MOFs to produce recyclable oxidation catalysts, Catal. Sci. Technol., 7, 1478, 10.1039/C6CY02662A
Hassan, 2017, Stable and recyclable MIL-101(Cr)–Ionic liquid based hybrid nanomaterials as heterogeneous catalyst, J. Mol. Liq., 236, 385, 10.1016/j.molliq.2017.04.034
Sun, 2017, A metal–organic framework impregnated with a binary ionic liquid for safe proton conduction above 100°C, Chem. A Eur. J., 23, 1248, 10.1002/chem.201605215
Li, 2016, Constructing efficient ion nanochannels in alkaline anion exchange membranes by the in situ assembly of a poly(ionic liquid) in metal-organic frameworks, J. Mater. Chem. A, 4, 2340, 10.1039/C5TA10452A
Khan, 2016, Ionic liquid@MIL-101 prepared via the ship-in-bottle technique: remarkable adsorbents for the removal of benzothiophene from liquid fuel, Chem. Commun., 52, 2561, 10.1039/C5CC08896H
Luo, 2013, Organic electron-rich N-heterocyclic compound as a chemical bridge: Building a Brönsted acidic ionic liquid confined in MIL-101 nanocages, J. Mater. Chem. A, 1, 6530, 10.1039/c3ta10975e
Ma, 2016, Fabrication of mixed-matrix membrane containing metal–organic framework composite with task-specific ionic liquid for efficient CO2 separation, J. Mater. Chem. A, 4, 7281, 10.1039/C6TA02611G
Sezginel, 2016, Tuning the gas separation performance of CuBTC by ionic liquid incorporation, Langmuir, 32, 1139, 10.1021/acs.langmuir.5b04123
xing Luo, 2015, Metal–organic frameworks HKUST-1 as porous matrix for encapsulation of basic ionic liquid catalyst: effect of chemical behaviour of ionic liquid in solvent, J. Porous Mater., 22, 247, 10.1007/s10934-014-9891-7
Chen, 2016, Immobilization of a thiol-functionalized ionic liquid onto HKUST-1 through thiol compounds as the chemical bridge, RSC Adv., 6, 54119, 10.1039/C6RA03317B
Wan, 2015, Encapsulation of heteropolyanion-based ionic liquid within the metal-organic framework MIL-100(Fe) for biodiesel production, ChemCatChem, 7, 441, 10.1002/cctc.201402800
Han, 2016, Efficient confinement of ionic liquids in MIL-100(Fe) frameworks by the ‘impregnation-reaction-encapsulation’ strategy for biodiesel production, RSC Adv., 6, 37110, 10.1039/C6RA00579A
Nasrollahpour, 2017, Hexavalent chromium removal from water by ionic liquid modified metal-organic frameworks adsorbent, Microporous Mesoporous Mater., 243, 47, 10.1016/j.micromeso.2017.02.006
Nasrollahpour, 2017, Vortex-assisted dispersive solid-phase microextraction using ionic liquid-modified metal-organic frameworks of pahs from environmental water, vegetable, and fruit juice samples, Food Anal. Methods, 10, 2815, 10.1007/s12161-017-0843-0
Abednatanzi, 2017, Immobilization of catalytically active polyoxotungstate into ionic liquid-modified MIL-100(Fe): a recyclable catalyst for selective oxidation of benzyl alcohol, Catal. Commun., 96, 6, 10.1016/j.catcom.2017.03.011
Wu, 2015, Deep desulfurization by oxidation using an active ionic liquid-supported Zr metal-organic framework as catalyst, Appl. Organomet. Chem., 29, 96, 10.1002/aoc.3251
Ding, 2017, Bifunctional imidazolium-based ionic liquid decorated UiO-67 Type MOF for Selective CO2 adsorption and catalytic property for CO2 cycloaddition with epoxides, Inorg. Chem., 56, 2337, 10.1021/acs.inorgchem.6b03169
Freudenmann, 2011, Ionic liquids: new perspectives for inorganic synthesis?, Angew. Chem. Int. Ed., 50, 11050, 10.1002/anie.201100904
Morris, 2009, Ionothermal synthesis - Ionic liquids as functional solvents in the preparation of crystalline materials, Chem. Commun., 2990, 10.1039/b902611h
Abroshan, 2015, On the structural stability of ionic liquid-IRMOF composites: a computational study, Phys. Chem. Chem. Phys., 17, 6248, 10.1039/C4CP02428A
Gupta, 2012, Metal-organic framework supported ionic liquid membranes for CO2 capture: anion effects, Phys. Chem. Chem. Phys., 14, 5785, 10.1039/c2cp23972h
Yampolskii, 2012, Polymeric gas separation membranes, Macromolecules, 45, 3298, 10.1021/ma300213b
Monteiro, 2018, Impact on CO2/N2 and CO2/CH4 separation performance using Cu-BTC with supported ionic liquids-based mixed matrix membranes, Membranes (Basel), 8
R. Lin, “MOFs-based mixed matrix membranes for gas separation,” 2016.
Xin, 2015, Enhanced interfacial interaction and CO2 separation performance of mixed matrix membrane by incorporating polyethylenimine-decorated metal-organic frameworks, ACS Appl. Mater. Interfaces, 7, 1065, 10.1021/am504742q
Venna, 2015, Fabrication of MMMs with improved gas separation properties using externally-functionalized MOF particles, J. Mater. Chem. A, 3, 5014, 10.1039/C4TA05225K
Denny, 2015, In situ modification of metal-organic frameworks in mixed-matrix membranes, Angew. Chem. Int. Ed., 54, 9029, 10.1002/anie.201504077
M. M. Maroto-Valer, Developments and innovation in carbon dioxide capture and storage technology. Volume 1: Carbon dioxide capture, transport and industrial applications.2010.
Hudiono, 2011, Novel mixed matrix membranes based on polymerizable room-temperature ionic liquids and SAPO-34 particles to improve CO2 separation, J. Memb. Sci., 370, 141, 10.1016/j.memsci.2011.01.012
Shindo, 2014, Characterization and gas permeation properties of polyimide/ZSM-5 zeolite composite membranes containing ionic liquid, J. Memb. Sci., 454, 330, 10.1016/j.memsci.2013.12.031
Tzialla, 2013, Zeolite imidazolate framework-ionic liquid hybrid membranes for highly selective CO2 separation, J. Phys. Chem. C, 117, 18434, 10.1021/jp4051287
Chui, 1999, A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n, Science (80-.), 283, 1148, 10.1126/science.283.5405.1148
Venna, 2010, Highly permeable zeolite imidazolate framework-8 membranes for CO2/CH4 separation, J. Am. Chem. Soc., 132, 76, 10.1021/ja909263x
Robeson, 2008, The upper bound revisited, J. Memb. Sci., 320, 390, 10.1016/j.memsci.2008.04.030
P. Ortiz-albo et al., “Impact of ionic liquid structure and loading on gas sorption and permeation for ZIF-8-based composites and mixed matrix membranes,” 2022.