Integrated control of brake pressure and rear-wheel steering to improve lateral stability with fuzzy logic

International Journal of Automotive Technology - Tập 13 - Trang 563-570 - 2012
J. Song1
1Department of Mechatronics Engineering, Tongmyong University, Busan, Korea

Tóm tắt

This study introduces an integrated dynamic control with steering (IDCS) system to improve vehicle handling and stability under severe driving conditions. It integrates an active rear-wheel steering control system and a direct yawmoment control system with fuzzy logic. Direct yaw-moment control is achieved by modifying the optimal slip of the front outer wheel. An 8-degree-of-freedom vehicle model was used to evaluate the proposed IDCS for various road conditions and driving inputs. The results show that the yaw rate tracked the reference yaw rate and that the body slip angle was reduced when the IDCS was employed, thereby increasing the controllability and stability of the vehicle on slippery roads. The IDCS system reduced the deviation from the center line for a vehicle running on a split m road.

Tài liệu tham khảo

Boada, M. J. L., Boada, B. L., Munoz, A. and Diaz, V. (2006). Integrated control of front-wheel steering and front braking forces on the basis of fuzzy logic. Proc. IMechE, Part D: J. Automobile Engineering, 220, 253–267. Dugoff, H., Fancher, P. S. and Segel, L. (1970). An analysis of tire traction properties and their influence on vehicle dynamic performance. SAE Paper No. 700377. He, J., Crolla, D. A., Levesley, M. C. and Manning, W. J. (2006). Coordination of active steering, driveline, and braking for integrated vehicle dynamics control. Proc. IMechE, Part D: J. Automobile Engineering, 220, 1401–1421. Li, B. and Fan, Y. (2010). Design of a vehicle lateral stability control system via a fuzzy logic control approach. Proc. IMechE, Part D: J. Automobile Engineering 223,3, 313–326. Manning, W. J. and Crolla, D. A. (2007) A review of yaw rate and sideslip controllers for passenger vehicles. Trans. Institute of Measurement and Control 29,2, 117–135. Mokhiamar, O. and Abe, M. (2002). Active wheel steering and yaw moment control combination to maximize stability as well as vehicle responsiveness during quick lane change for active vehicle handling safety. Proc. IMechE, Part D: J. Automobile Engineering, 216, 115–124. Nagai, M., Shino, M. and Gao, F. (2002). Study on integrated control of active front steer angle and direct yaw moment. JSAE Review, 23, 309–315. Nguyen, H. T., Prasad, N. R., Walker, C. L. and Walker, E. A. (2003). A First Course in Fuzzy and Neural Control. Chapman & Hall/CRC. New York. Shino, M., Raksincharoensak, P. and Nagai, M. (2002). Vehicle handling and stability control by integrated control of direct yaw moment and active steering. 6th Int. Symp. Advanced Vehicle Control, Proc. AVEC’02, Tokyo, Japan. Song, J. (2009). Comparison and evaluation of steer yaw motion controllers with an anti-lock brake system. Proc. IMechE, Part D: J. Automobile Engineering 223,4, 503–518. Song, J. and Che, W. S. (2008). Comparison and evaluation of brake yaw motion controllers with an antilock brake system. Proc. IMechE, Part D: J. Automobile Engineering 222,7, 1273–1288. Song, J. and Che, W. S. (2009). Comparison between braking and steering yaw moment controllers considering ABS control aspects. Mechatronics 19,7, 1126–1133. Wu, J. Y., Tang, H. J., Li, S. Y. and Zheng, S. B. (2007). Integrated control system design of an active front wheel steering and four wheel torque to improve vehicle handling and stability. Int. J. Automotive Technology 8,3, 299–308.