Integrated S‐Scheme Heterojunction of Amine‐Functionalized 1D CdSe Nanorods Anchoring on Ultrathin 2D SnNb2O6 Nanosheets for Robust Solar‐Driven CO2 Conversion

Solar RRL - Tập 5 Số 4 - 2021
Xiaochun Ke1, Jinfeng Zhang1, Kai Dai1, Ke Fan2, Changhao Liang3
1Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Physics and Electronic Information, Huaibei Normal University, Huaibei, Anhui, 235000 P. R. China
2State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
3Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031 P. R. China

Tóm tắt

Photocatalytic CO2 reduction to value‐added fuels is an appealing avenue in response to global warming and the energy crisis, but it still suffers from high energy barriers, low conversion efficiencies, and poor photostability. Herein, a novel S‐scheme SnNb2O6/CdSe–diethylenetriamine (SNO/CdSe–DET) heterojunction is designed by a microwave‐assisted solvothermal process, composed of 2D ultrathin SNO nanosheets (NSs) and amine‐modified CdSe–DET nanorods (NRs). The SNO/CdSe–DET composite without any co‐catalyst possesses a boosted performance in the solar‐driven photocatalytic conversion of CO2 to CO, and the highest CO evolution rate achieved is 36.16 μmol g−1 h−1, which is roughly 3.58 and 9.39 times greater than those of CdSe–DET and SNO under visible‐light illumination. Such a superior activity should be ascribed to the S‐scheme system, which benefits the separation of the photogenerated carriers and promotes the synergy between CdSe–DET NRs and SNO NSs by strong chemical‐bonding coordination. Meanwhile, DET can enhance CO2 adsorption/activation and precisely regulate the surface reactive sites. This innovative work provides fresh insight into the development of highly efficient S‐scheme photocatalytic heterostructures for CO2 reduction.

Từ khóa


Tài liệu tham khảo

10.1021/jacs.8b12928

10.1002/adma.201908350

10.1021/acs.chemrev.8b00400

10.1038/277637a0

10.1016/j.jcis.2020.10.048

10.1016/j.jhazmat.2019.120972

10.1002/solr.201900469

10.1021/acsnano.0c04544

10.1021/jacs.9b11089

10.1002/adfm.201806500

10.1016/j.apcatb.2018.06.009

10.1039/C9TA10470D

10.1002/adfm.201804284

10.1021/acsnano.0c02940

10.1039/C9CS00920E

10.1021/acsami.0c11072

10.1002/aenm.202002928

10.1038/s41467-019-13993-7

10.1016/j.chempr.2020.06.010

10.1016/S1872-2067(19)63389-9

10.1016/j.jhazmat.2019.121690

10.1038/s41467-020-18350-7

10.1002/solr.202000351

10.1002/aenm.201803889

10.1016/j.apcatb.2018.11.033

10.1016/j.apcatb.2020.118867

10.1016/j.ceramint.2019.09.044

10.1002/anie.201913003

10.1002/adfm.201703277

10.1016/j.apcatb.2020.119452

10.1016/S1872-2067(19)63481-9

10.1021/acsami.0c08152

10.1002/adma.201800128

10.1039/C8CS00607E

10.1002/solr.202000132

10.1016/j.apsusc.2019.144783

10.1016/j.carbon.2019.07.083

10.1016/j.apcatb.2020.118870

10.1039/C9CC08578E

10.1016/j.nanoen.2019.03.010

10.1021/acsami.8b14282

10.1016/j.scib.2019.05.012

10.1016/j.apcatb.2020.118844

10.1021/acs.chemrev.6b00164

10.1016/j.jcis.2019.05.104

10.1021/acssuschemeng.7b03032

10.1021/acssuschemeng.8b03006

10.1039/C9SE00633H

10.1038/s41560-019-0431-1

10.1016/j.jcis.2019.07.087

10.1002/solr.201900423

10.1021/acsami.9b15950

10.1039/C8DT04578J

10.1039/C8TA04258F

10.1016/j.apcatb.2020.119232

10.1021/acsami.8b09455

10.1002/anie.201916012

10.1021/acsanm.0c02616

10.1016/j.apcatb.2015.10.022

10.1021/acssuschemeng.0c04829

10.1016/j.jmst.2020.02.062

10.1002/anie.201809492

10.1021/jacs.7b10287

10.1016/j.scib.2020.02.019

10.1016/j.apcatb.2020.118619

10.1021/acssuschemeng.9b06046

10.1016/S1872-2067(18)63165-1

10.1021/acsami.9b05074

10.1002/solr.202000326

10.1002/smll.202002988

10.1016/S1872-2067(20)63560-4

10.1016/j.apcatb.2020.119006