Integral representation without additivity

Proceedings of the American Mathematical Society - Tập 97 Số 2 - Trang 255-261
David Schmeidler

Tóm tắt

Let I I be a norm-continuous functional on the space B B of bounded Σ \Sigma -measurable real valued functions on a set S S , where Σ \Sigma is an algebra of subsets of S S . Define a set function v v on Σ \Sigma by: v ( E ) v (E) equals the value of I I at the indicator function of E E . For each a a in B B let \[ J ( a ) = 0 ( v ( a α ) v ( S ) ) d α + 0 v ( a α ) d α . J(a) = \int _{ - \infty }^0 {(v (a \geq \alpha ) - v (S))d\alpha + \int _0^\infty {v (a \geq \alpha )d\alpha .} } \] Then I = J I = J on B B if and only if I ( b + c ) = I ( b ) + I ( c ) I(b + c) = I(b) + I(c) whenever ( b ( s ) b ( t ) ) ( c ( s ) c ( t ) ) 0 (b(s) - b(t))(c(s) - c(t)) \geqslant 0 for all s s and t t in S S .

Từ khóa


Tài liệu tham khảo

Choquet, Gustave, 1953, Theory of capacities, Ann. Inst. Fourier (Grenoble), 5, 131, 10.5802/aif.53

Dellacherie, C., 1971, Quelques commentaires sur les prolongements de capacités, 77

Dunford and J. T. Schwartz (1957), Linear operators. Part I, Interscience, New York.

Schmeidler (1984), Subjective probability and expected utility without additivity (previous version (1982), Subjective probability without additivity), Foerder Inst. Econ. Res., TelAviv Univ.

S. Shapley (1965), Notes on 𝑛-person games. VII: Cores of convex games, Rand Corp. R.M. Also (1971), Internat. J. Game Theory 1, 12-26, as Cores of convex games.