Bất đẳng thức tích phân loại Hermite-Hadamard cho các hàm có đạo hàm bậc ba lồi

Springer Science and Business Media LLC - Tập 2013 - Trang 1-10 - 2013
Ling Chun1, Feng Qi2
1College of Mathematics, Inner Mongolia University for Nationalities, Tongliao City, China
2Department of Mathematics, College of Science, Tianjin Polytechnic University, Tianjin City, China

Tóm tắt

Trong bài báo này, các tác giả thiết lập một số bất đẳng thức mới loại Hermite-Hadamard đối với các hàm mà đạo hàm bậc ba của chúng là lồi.

Từ khóa

#Hàm lồi #bất đẳng thức Hermite-Hadamard #đạo hàm bậc ba #bất đẳng thức tích phân.

Tài liệu tham khảo

Dragomir SS: Two mappings on connection to Hadamard’s inequality. J. Math. Anal. Appl. 1992, 167(1):49–56. Available online at 10.1016/0022-247X(92)90233-4 Kirmaci US: Inequalities for differentiable mappings and applications to special means of real numbers to midpoint formula. Appl. Math. Comput. 2004, 147(1):137–146. Available online at 10.1016/S0096-3003(02)00657-4 Dragomir SS, Pečarić J, Persson L-E: Some inequalities of Hadamard type. Soochow J. Math. 1995, 21(3):335–341. Alomari M, Hussain S: Two inequalities of Simpson type for quasi-convex functions and applications. Appl. Math. E-Notes 2011, 11: 110–117. Hudzik H, Maligranda L: Some remarks on s -convex functions. Aequ. Math. 1994, 48(1):100–111. Available online at 10.1007/BF01837981 Chun L, Qi F: Integral inequalities of Hermite-Hadamard type for functions whose 3rd derivatives are s -convex. Appl. Math. 2012, 3(11):1680–1685. Available online at 10.4236/am.2012.311232 Bai R-F, Qi F, Xi B-Y: Hermite-Hadamard type inequalities for the m - and (α,m) -logarithmically convex functions. Filomat 2013, 27(1):1–7. Available online at 10.2298/FIL1301001B Bai S-P, Qi F:Some inequalities for ( s 1 , m 1 ) - ( s 2 , m 2 ) -convex functions on the co-ordinates. Glob. J. Math. Anal. 2013, 1(1):22–28. Bakula MK, Özdemir ME, Pečarić J: Hadamard type inequalities for m -convex and (α,m) -convex functions. J. Inequal. Pure Appl. Math. 2008., 9(4): Article ID 96. Available online at http://www.emis.de/journals/JIPAM/article1032.html Kavurmaci, H, Avci, M, Özdemir, ME: New inequalities of Hermite-Hadamard type for convex functions with applications. Available online at arXiv:1006.1593. e-printatarXiv.org Qi F, Wei Z-L, Yang Q: Generalizations and refinements of Hermite-Hadamard’s inequality. Rocky Mt. J. Math. 2005, 35(1):235–251. Available online at 10.1216/rmjm/1181069779 Shuang Y, Yin H-P, Qi F: Hermite-Hadamard type integral inequalities for geometric-arithmetically s -convex functions. Analysis 2013, 33(2):197–208. Available online at 10.1524/anly.2013.1192 Xi B-Y, Qi F: Some Hermite-Hadamard type inequalities for differentiable convex functions and applications. Hacet. J. Math. Stat. 2013, 42(3):243–257. Xi B-Y, Qi F: Hermite-Hadamard type inequalities for functions whose derivatives are of convexities. Nonlinear Funct. Anal. Appl. 2013, 18(2):163–176. Xi B-Y, Qi F: Some inequalities of Hermite-Hadamard type for h -convex functions. Adv. Inequal. Appl. 2013, 2(1):1–15. Xi B-Y, Wang Y, Qi F:Some integral inequalities of Hermite-Hadamard type for extended (s,m) -convex functions. Transylv. J. Math. Mech. 2013, 5(1):69–84. Zhang T-Y, Ji A-P, Qi F: Integral inequalities of Hermite-Hadamard type for harmonically quasi-convex functions. Proc. Jangjeon Math. Soc. 2013, 16(3):399–407. Zhang T-Y, Ji A-P, Qi F: On integral inequalities of Hermite-Hadamard type for s -geometrically convex functions. Abstr. Appl. Anal. 2013., 2013: Article ID 560586. Available online at 10.1155/2012/560586 Zhang T-Y, Ji A-P, Qi F: Some inequalities of Hermite-Hadamard type for GA-convex functions with applications to means. Matematiche 2013, 68(1):229–239. Available online at 10.4418/2013.68.1.17 Dragomir SS, Pearce CEM RGMIA Monographs. In Selected Topics on Hermite-Hadamard Type Inequalities and Applications. Victoria University, Melbourne; 2000. Available online at http://rgmia.org/monographs/hermite_hadamard.html Niculescu CP, Persson L-E: Convex functions and their applications. In CMS Books in Mathematics. Springer, Berlin; 2005.