Integral inequalities for some convex functions via generalized fractional integrals

Naila Mehreen1, Mustafa Anwar1
1School of Natural Sciences, National University of Sciences and Technology, Islamabad, Pakistan

Tóm tắt

Từ khóa


Tài liệu tham khảo

Chen, F.: Extension of the Hermite–Hadamard inequality for harmonically convex functions via fractional integrals. Appl. Math. Comput. 268, 121–128 (2015)

Dragomir, S.S.: Hermite–Hadamard’s type inequality for operator convex functions. Appl. Math. Comput. 218(3), 766–772 (2011)

Dragomir, S.S., Toader, G.H.: Some inequalities for m-convex functions. Stud. Univ. Babeş–Bolyai, Math. 38, 21–28 (1993)

Hadamard, J.: Etude sur les proprietes des fonctions entieres et en particulier d’une fonction consideree par Riemann. J. Math. Pures Appl. 58, 171–215 (1893)

Hudzik, H., Maligranda, L.: Some remarks on s-convex functions. Aequ. Math. 48(1), 100–111 (1994)

Iscan, I.: Hermite–Hadamard type inequalities for harmonically convex functions. Hacet. J. Math. Stat. 43(6), 935–942 (2014)

Iscan, I., Wu, S.: Hermite–Hadamard type inequalities for harmonically convex functions via fractional integrals. Appl. Math. Comput. 237, 237–244 (2014)

Jleli, M., O’Regan, D., Samet, B.: On Hermite–Hadamard type inequalities via generalized fractional integrals. Turk. J. Math. 40, 1221–1230 (2016)

Katugampola, U.N.: New approach to generalized fractional derivatives. Bull. Math. Anal. Appl. 6(4), 1–15 (2014)

Latif, M.A., Shoaib, M.: Hermite–Hadamard type integral inequalities for differentiable m-preinvex and α, m-preinvex functions. J. Egypt. Math. Soc. 23(2), 236–241 (2015)

Niculescu, C.P.: The Hermite–Hadamard inequality for log-preinvex functions. Nonlinear Anal. 75(2), 662–669 (2012)

Noor, M.A.: On Hadamard integral inequalities involving two log-convex functions. J. Inequal. Pure Appl. Math. 8(3), 1–14 (2007)

Noor, M.A.: On Hadamard integral inequalities for product of two preinvex functions. Nonlinear Anal. Forum 14, 167–173 (2009)

Ozdemir, M.E., Avci, M., Kavurmaci, H.: Hermite–Hadamard-type inequalities via α, m-convexity. Comput. Math. Appl. 61(9), 2614–2620 (2011)

Podlubny, I.: Fractional Differential Equations: Mathematics in Science and Engineering. Academic Press, San Diego (1999)

Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives, Theory and Applications. Gordon & Breach, Amsterdam (1993)

Sarikaya, M.Z., Set, E., Yaldiz, H., Basak, H.: Hermite–Hadamard inequalities for fractional integrals and related fractional inequalities. Math. Comput. Model. 57, 2403–2407 (2013)

Sarikaya, M.Z., Set, E., Yaldiz, H., Basak, N.: Hermite–Hadamard’s inequalities for fractional integrals and related fractional inequalities. Math. Comput. Model. 57(9), 2403–2407 (2013)

Set, E., Akdemir, A.O., Mumcu, I.: The Hermite–Hadamard’s inequality and its extensions for conformable fractional integrals of any order α > 0 $\alpha >0$ (2016). Preprint

Set, E., Ozdemir, M.E., Dragomir, S.S.: On Hadamard-type inequalities involving several kinds of convexity. J. Inequal. Appl. 2010, 12 (2010)

Set, E., Sarikaya, M.Z., Gozpinar, A.: Some Hermite–Hadamard type inequalities for convex functions via conformable fractional integrals and related inequalities (2016). Preprint

Set, E., Sarikaya, M.Z., Ozdemir, M.E., Yaldirm, H.: The Hermite–Hadamard’s inequality for some convex functions via fractional integrals and related results. J. Appl. Math. Stat. Inform. 10(2), 69–83 (2014)

Toader, G.H.: Some generalisations of the convexity. In: Proc. Colloq. Approx. Optim, pp. 329–338. Cluj-Napoca, Romania (1984)