Integral Geometry of Tame Sets
Tóm tắt
Curvature measures on certain tame Whitney-stratified sets are defined as coefficients of modified volume-growth polynomials. Stratified Morse theory yields alternative descriptions of these curvature measures for tame (possibly highly singular) sets. From this we obtain a generalized Gauss–Bonnet formula and various kinematic formulas. Finally, for O-minimal sets it is shown that curvature measures only depend on the inner metric.
Tài liệu tham khảo
Allendoerfer, C.: The Euler number of a Riemann manifold, Amer. J. Math. 62 (1940), 243–248.
Allendoerfer, C. and Weil, A.: The Gauss-Bonnet theorem for Riemannian polyhedra, Trans. Amer. Math. Soc. 53 (1943), 101–129.
Banchoff, T.: Critical points and curvature for embedded polyhedra, J. Differential Geom. 1 (1967), 245–256.
Blaschke, W.: Vorlesungen über Integralgeometrie, Teubner-Verlag, Leipzig, Berlin, 1935.
Cheeger, J., Müller, W. and Schrader, R.: On the curvature of piecewise flat spaces, Comm. Math. Phys. 92 (1984), 405–454.
Cheeger, J., Müller, W. and Schrader, R.: Kinematic and tube formulas for piecewise linear spaces, Indiana Univ. Math. J. 35(4) (1986), 737–754.
Chern, S.-S.; A simple intrinsic proof for the Gauss-Bonnet formula for closed Riemannian manifolds, Ann. of Math. 45 (1944), 747–752.
Chern, S.-S.: On the kinematic formula in integral geometry, J. Math.Mech. 16 (1966), 101–118.
van den Dries, L.: Tame Topology and O-minimal Structures, London Math. Soc. Lecture Notes Ser. 248, Cambridge Univ. Press, 1998.
Van den Dries, L. and Miller, C.: Geometric categories and O-minimal structures, Duke Math. J. 84 (1996), 497–540.
Federer, H.: Curvature measures, Trans. Amer. Math. Soc. 93 (1959), 418–491.
Federer, H.: Geometric Measure Theory, Springer-Verlag, Berlin, 1969.
Ferus, D.: Totale Absolutkrümmung in Differentialgeometrie und-topologie, Lecture Notes in Math., Springer, New York, 1968.
Fu, J. H. G.: Curvature measures and generalized Morse theory, J. Differential Geom. 30 (1989), 619–642.
Fu, J. H. G.: Curvature measures of subanalytic sets, Amer. J. Math. 116(4) (1994), 819–880.
Gilkey, P.: Invariance Theory, the Heat Equation and the Atiyah Singer Equation, Publish or Perish, New York, 1984.
Goresky, M. and MacPherson, R.: Stratified Morse Theory, Springer-Verlag, Berlin, 1988.
Hadwiger, H.: Vorlesungen über Inhalt, Oberfläche und Isoperimetrie, Springer-Verlag, Berlin, 1957.
Hamm, H.: On stratified Morse theory, Topology 38 (1999), 427–438.
Hardt, R.: Topological properties of subanalytic sets, Trans. Amer. Math. Soc. 211 (1975), 57–70.
Milnor, J.: Morse Theory, Ann. of Math. Studies, 51, Princeton Univ. Press, Princeton, N.J., 1969.
Milnor, J.: Euler Characteristic and Finitely Additiv Steiner Measures, collected papers vol. 1, 213–234, Publish or Perish Inc., Boston, 1994.
Minkowski, H.: Theorie der konvexen Körper, Gesammelte Abh. 2, Leipzig, 1911, reprinted by Chelsea, pp. 131–229, 1967.
Santaló, L.: Geometria Integral 15. Fórmula fundamental de la media cinemática para cilindros y planos paralelos móviles, Abh. Math. Sem. Univ. Hamburg 12, 1937.
Santaló, L.: Integral Geometry and Geometric Probability, Addison-Wesley, Reading, Mass., 1976.
Schneider, R. and Weil,W.: Integralgeometrie, Teubner-Verlag, Stuttgart, 1992.
Shiota, M.: Geometry of Subanalytic and Semialgebraic Sets, Birkhäuser, Boston, 1997.
Spivak, M.: Differential Geometry, Publish or Perish, Boston, 1975.
Thom, R.: Ensembles et morphismes stratifiés, Bull. Amer.Math. Soc. 75 (1969), 240–284.
Weyl, H.: On the volume of tubes, Amer. J. Math. 61 (1939), 461–472.
Whitney, H.: Tangents to an analytic variety, Ann. of Math. 81 (1965), 496–549.
Zähle, M.: Curvature and currents for unions of sets with positive reach, Geom. Dedicata 23 (1987), 155–171.