Integrability conditions on a sub-Riemannian structure on $$\mathbb {S}^3$$

Ovidiu Calin1, Der–Chen Chang2, Ji Shan Hu3
1Department of Mathematics, Eastern Michigan University, Ypsilanti, USA
2Department of Mathematics and Statistics, Georgetown University, Washington, DC, 20057, USA
3Department of Mathematics, Hong Kong University of Sciences and Technology, Kowloon, Hong Kong

Tóm tắt

Từ khóa


Tài liệu tham khảo

Calin, O., Chang, D.C.: Sub-Riemannian geometry. General theory and examples, encyclopedia of mathematics and its applications. Cambridge University Press, Cambridge (2009)

Calin, O., Chang, D.C.: Geometric mechanics on Riemannian manifolds: applications to partial differential equations. Applied and numerical analysis. Birhäuser, Boston (2004)

Calin, O., Chang, D.C., Eastwood, M.: Integrability conditions for the Grushin and Martinet distributions. Bull. IMAS New Ser. 2, 159–168 (2013)

Calin, O., Chang, D.C., Eastwood, M.: Integrability conditions for Heisenberg and Grushin-type distributions. Anal. Math. Phys. 4, 99–114 (2014)

Calin, O., Chang, D.C., Hu, J.: A Poincaré lemma for the Heisenberg group. Adv. Appl. Anal. 60, 90–102 (2014)

Calin, O., Chang, D.C., Hu, J.: Integrability conditions on Engel-type manifolds. Anal. Math. Phys. 5(3), 217–231 (2015)

Calin, O., Chang, D.C., Markina, I.: SubRiemannian geometry on the sphere $$\mathbb{S}^3$$. Can. J. Math. 61(4), 721–739 (2009)

Hörmander, L.: Hypo-elliptic second order differential equations. Acta Math. 119, 147–171 (1967)

Wolfram Research Inc, Mathematica, Version 10.3, Champaign, IL (2015)