Integer rounding and modified integer rounding for the skiving stock problem

Discrete Optimization - Tập 21 - Trang 118-130 - 2016
J. Martinovic1, G. Scheithauer1
1Institute of Numerical Mathematics, Dresden University of Technology, 01069 Dresden, Germany

Tài liệu tham khảo

Johnson, 1997, Skiving addition to the cutting stock problem in the paper industry, SIAM Rev., 39, 472, 10.1137/S003614459531004X Zak, 2003, The skiving stock problem as a counterpart of the cutting stock problem, Int. Trans. Oper. Res., 10, 637, 10.1111/1475-3995.00433 Assmann, 1984, On a dual version of the one-dimensional bin packing problem, J. Algorithms, 5, 502, 10.1016/0196-6774(84)90004-X Labbe, 1995, An exact algorithm for the dual bin packing problem, Oper. Res. Lett., 17, 9, 10.1016/0167-6377(94)00060-J Peeters, 2006, Branch-and-price algorithms for the dual bin packing and maximum cardinality bin packing problem, European J. Oper. Res., 170, 416, 10.1016/j.ejor.2004.06.034 Csirik, 1991, Probabilistic analysis of algorithms for dual bin packing problems, J. Algorithms, 12, 189, 10.1016/0196-6774(91)90001-F Bruno, 1985, Probabilistic bounds for dual bin-packing, Acta Inform., 22, 333, 10.1007/BF00265685 Alvim, 2004, A hybrid improvement heuristic for the one-dimensional bin packing problem, J. Heuristics, 10, 205, 10.1023/B:HEUR.0000026267.44673.ed Vijayakumar, 2013, A dual bin-packing approach to scheduling surgical cases at a publicly-funded hospital, European J. Oper. Res., 224, 583, 10.1016/j.ejor.2012.09.010 Gilmore, 1961, A linear programming approach to the cutting-stock problem (part i), Oper. Res., 9, 849, 10.1287/opre.9.6.849 Martinovic, 2016, Integer linear programming models for the skiving stock problem, European J. Oper. Res., 251, 356, 10.1016/j.ejor.2015.11.005 Baum, 1981, Integer rounding for polymatroid and branching optimization problems, SIAM J. Algebr. Discrete Methods, 2, 416, 10.1137/0602044 Marcotte, 1983 Filippi, 2007 Rietz, 2003 Eisenbrand, 2013, Bin packing via discrepancy of permutations, ACM Trans. Algorithms, 9, 10.1145/2483699.2483704 R. Hoberg, T. Rothvoss, A logarithmic additive integrality gap for bin packing, 2015. (arxiv:1503.08796v1). G. Nemhauser, Column generation for linear and integer programming, in: Grötschel, M., (Ed.), Optimization Stories: 21st International Symposium on Mathematical Programming. Documenta Mathematica, 2012. Scheithauer, 2008 Scheithauer, 1992, About the gap between the optimal value of the integer and continuous relaxation one-dimensional cutting stock problem, 439 Fieldhouse, 1990, The duality gap in trim problems, SICUP-Bull., 5, 4 Rietz, 2002, Families of non-irup instances of the one-dimensional cutting stock problem, Discrete Appl. Math., 121, 229, 10.1016/S0166-218X(01)00361-4 J. Martinovic, G. Scheithauer, Integer rounding and modified integer rounding for the skiving stock problem. Preprint MATH-NM-02-2015, Technische Universität Dresden, 2015. Nitsche, 1999, Tighter relaxations for the cutting stock problem, European J. Oper. Res., 112, 654, 10.1016/S0377-2217(97)00404-9 Kartak, 2015, Minimal proper non-IRUP instances of the one-dimensional cutting stock problem, Discrete Appl. Math., 187, 120, 10.1016/j.dam.2015.02.020