Intact polar membrane lipids in prokaryotes and sediments deciphered by high‐performance liquid chromatography/electrospray ionization multistage mass spectrometry—new biomarkers for biogeochemistry and microbial ecology

Rapid Communications in Mass Spectrometry - Tập 18 Số 6 - Trang 617-628 - 2004
Helen Sturt1, Roger E. Summons2, K. M. Smith1, Marcus Elvert3, Kai‐Uwe Hinrichs3,1
1Woods Hole Oceanographic Institution, Department of Geology and Geophysics, Woods Hole, MA 02543, USA
2Massachusetts Institute of Technology, Department of Earth and Planetary Sciences, Cambridge, MA, USA
3DFG Research Center Ocean Margins, Organic Geochemistry Group, University of Bremen, 28334 Bremen, Germany

Tóm tắt

AbstractLipids from prokaryotic cell membranes can serve as sources of information on the biogeochemistry and microbial ecology of natural ecosystems. Traditionally, apolar derivatives of the intact polar membrane molecules, e.g., fatty acids, have been the major target of lipid‐based biogeochemical studies. However, when still intact, i.e., as glycerol esters and ethers with attached polar headgroups, membrane lipids are diagnostic for living prokaryotes, which makes them excellent biomarkers for the study of in situ microbial processes in geological systems such as sediments or soils. Intact polar lipids (IPLs) are attractive analytical targets because they are taxonomically more specific than their apolar derivatives and avoid exclusion of signals from prokaryotes that primarily build their membranes with ether‐bound lipids such as archaea and some bacteria. Here we report results from analyses of IPLs in pure cultures of biogeochemically relevant prokaryotes and marine sediments by high‐performance liquid chromatography/electrospray ionization ion‐trap mass spectrometry (HPLC/ESI‐IT‐MSn). This technique is suitable for screening of biomass and environmental samples for distinctive taxonomic structural features such as distribution of polar lipid headgroups, types of bonds between alkyl moiety and glycerol backbone, and the chain length and degree of unsaturation in the alkyl moieties. We present analytical protocols to decipher structural information from mass spectral data. The IPL contents in selected archaeal and bacterial species are diverse and qualify as molecular fingerprints. Applied to marine sediments, the approach provided detailed information on the dominant microbial groups. The IPLs from bacterial members of anaerobic methanotrophic communities in surface sediments at Hydrate Ridge resemble those found in Desulfosarcina variabilis. The presence of dietherglycerophospholipids, however, suggests the presence of other bacteria possibly affiliated with the deepest phylogenetic branches in the tree of life. Sediments from ∼90 m below the seafloor on the Peruvian continental margin are dominated by intact archaeal tetraethers with glycosidically bound hexoses as headgroups, consistent with a significant fraction of the community being archaea. Additional calditol‐based tetraethers imply that the sedimentary archaea are taxonomically linked to the crenarchaeal Sulfolobales. Copyright © 2004 John Wiley & Sons, Ltd.

Từ khóa


Tài liệu tham khảo

10.1016/S0723-2020(83)80029-0

10.1128/jb.119.1.106-116.1974

10.1139/o90-038

10.1126/science.285.5430.1033

10.1038/19751

10.1126/science.1058424

10.1016/S0146-6380(00)00106-6

10.1520/STP38143S

Taylor J, 1985, J. Gen. Microbiol., 131, 631

10.1038/33900

10.1080/01490450303894

10.1007/BF00388810

10.1016/S0167-7012(01)00319-0

10.1016/S0146-6380(02)00028-1

10.1016/S0146-6380(03)00041-X

10.1128/AEM.67.4.1922-1934.2001

10.1016/0146-6380(90)90147-R

10.1002/(SICI)1097-0231(20000415)14:7<585::AID-RCM913>3.0.CO;2-N

10.1002/rcm.974

10.1007/s002030100343

Zeikus JG, 1983, J. Gen. Microbiol., 129, 1159

10.1016/S0723-2020(99)80009-5

WiddelF.Anaerober Abbau von Fettsäuren und Benzoesäure durch neu isolierte Arten sulfatreduzierender Bakterien. Thesis 1980 University of Göttingen Germany.

10.1006/jmbi.1995.0585

D'Hondt SL, 2003, Proc. ODP Init. Repts., 201

White DC, 1998, Techniques in Microbial Ecology, 255

10.1093/oxfordjournals.jbchem.a121969

10.1007/s00792-002-0279-2

10.1002/jms.276

10.1002/1097-0231(20000915)14:17<1596::AID-RCM66>3.0.CO;2-5

10.1016/0968-0004(88)90087-4

10.1016/0009-3084(94)90054-X

10.5702/massspec.49.195

10.1016/0163-7827(88)90011-2

10.1016/S0723-2020(11)80321-8

10.1002/bms.1200180203

10.1128/JB.183.21.6302-6304.2001

10.1139/m97-066

10.1128/jb.173.12.3907-3910.1991

10.1111/j.1574-6968.1993.tb06182.x

10.3109/10408419409113560

10.3109/07388559709146608

10.1128/MMBR.50.1.70-80.1986

Kates M, 1988, Biological Membranes: Aberrations in Membrane Structure and Function, 357

Langworthy TA, 1986, Thermophiles: General, Molecular and Applied Microbiology, 107

10.1038/378603a0

10.1007/BF02536042

Elvert M, 1999, Naturwissenschaften, 86, 295, 10.1007/s001140050619

10.1038/35036572

10.1029/94GB01800

10.1073/pnas.072210299

10.1007/978-3-662-05127-6_28

10.1126/science.1061338

10.1016/S0146-6380(01)00015-8

10.1128/AEM.68.4.1994-2007.2002

10.1016/S0723-2020(11)80206-7

10.1128/AEM.67.11.5179-5189.2001

10.1016/S0723-2020(96)80007-5

10.1080/01490450303896

Untersteller E, 1999, C.R. Acad. Sci. Paris Ser. II, 2, 429

10.1016/S0040-4039(01)02187-6

10.1073/pnas.89.12.5685