Intérêt de la phase postprandiale pour la santé de l’Homme

Lavoisier - Tập 9 - Trang 31-41 - 2013
C. Vors1,2,3,4,5, J. -A. Nazare1,2,3,4,5, M. -C. Michalski1,2,3,4,5, M. Laville1,2,3,4,5
1Laboratoire CarMeN, INRA USC 1362, INSERM U 1060, Oullins, France
2Centre Européen pour la Nutrition et la Santé (CENS), Oullins, France
3Centre de Recherche en Nutrition Humaine (CRNH) Rhône-Alpes, Oullins, France
4Université Lyon 1, Lyon, France
5Hospices Civils de Lyon, Lyon, France

Tóm tắt

L’être humain passe plus des trois quarts de sa vie à l’état postprandial. Si les liens entre maladies cardiométaboliques et anomalies du métabolisme à jeun ont été largement étudiés, il apparaît tout aussi important de s’interroger sur le rôle des paramètres biologiques en phase postprandiale, en lien notamment avec les phénomènes de lipo/glucotoxicité. L’étude de la modulation de cette phase s’avère cruciale pour mettre en évidence les phénomènes métaboliques sous-jacents aux réponses lipémiques et glycémiques et ainsi mieux caractériser leurs effets métaboliques à long terme.

Tài liệu tham khảo

Del Prato S (2009) Role of glucotoxicity and lipotoxicity in the pathophysiology of Type 2 diabetes mellitus and emerging treatment strategies. Diabet Med 26:1185–1192 O’Keefe JH, Bell DS (2007) Postprandial hyperglycemia/hyperlipidemia (postprandial dysmetabolism) is a cardiovascular risk factor. Am J Cardiol 100:899–904 Delarue J (2007) L’intérêt des traceurs isotopiques stables pour la recherche en nutrition humaine. La Lettre Scientifique de l’Institut Français pour la Nutrition 119:1–11 Vors C, Pineau G, Gabert L, et al (2013) Modulating absorption and postprandial handling of dietary fatty acids by structuring fat in the meal: a randomized crossover clinical trial. Am J Clin Nutr 97:23–36 Dubois C, Beaumier G, Juhel C, et al (1998) Effects of graded amounts (0–50 g) of dietary fat on postprandial lipemia and lipoproteins in normolipidemic adults. Am J Clin Nutr 67:31–38 Cohen JC, Noakes TD, Benade AJ (1988) Serum triglyceride responses to fatty meals: effects of meal fat content. Am J Clin Nutr 47: 825–827 Svensson J, Rosenquist A, Ohlsson L (2011) Postprandial lipid responses to an alpha-linolenic acid-rich oil, olive oil and butter in women: a randomized crossover trial. Lipids Health Dis 10:106 Thomsen C, Rasmussen O, Lousen T, et al (1999) Differential effects of saturated and monounsaturated fatty acids on postprandial lipemia and incretin responses in healthy subjects. Am J Clin Nutr 69: 1135–1143 Roche HM, Zampelas A, Knapper JM, et al (1998) Effect of long-term olive oil dietary intervention on postprandial triacylglycerol and factor VII metabolism. Am J Clin Nutr 68: 552–560 Rein P, Saely CH, Aczel S, et al (2009) Omega-3 fatty acids significantly reduce postprandial triglyceridemia in male smokers: a pilot study. Nutr Metab Cardiovasc Dis 19: e3–4 Wang H, Eckel RH (2009) Lipoprotein lipase: from gene to obesity. Am J Physiol Endocrinol Metab 297: E271–E288 Mekki N, Charbonnier M, Borel P, et al (2002) Butter differs from olive oil and sunflower oil in its effects on postprandial lipemia and triacylglycerol-rich lipoproteins after single mixed meals in healthy young men. J Nutr 132:3642–3649 Nordestgaard BG, Benn M, Schnohr P, et al (2007) Nonfasting triglycerides and risk of myocardial infarction, ischemic heart disease, and death in men and women. JAMA 298: 299–308 Michalski MC, Genot C, Gayet C, et al (2013) Multiscale structures of lipids in foods as parameters affecting fatty acid bioavailability and lipid metabolism. Prog Lipid Res 52: 354–373 Garaiova I, Guschina IA, Plummer SF, et al (2007) A randomised cross-over trial in healthy adults indicating improved absorption of omega-3 fatty acids by pre-emulsification. Nutr J 6: 4 Armand M, Pasquier B, Andre M, et al (1999) Digestion and absorption of 2 fat emulsions with different droplet sizes in the human digestive tract. Am J Clin Nutr 70: 1096–1106 Dubois C, Armand M, Mekki N, et al (1994) Effects of increasing amounts of dietary cholesterol on postprandial lipemia and lipoproteins in human subjects. J Lipid Res 35: 1993–2007 Cohen JC, Berger GM (1990) Effects of glucose ingestion on postprandial lipemia and triglyceride clearance in humans. J Lipid Res 31:597–602 Jeppesen J, Chen YI, Zhou MY, et al (1995) Postprandial triglyceride and retinyl ester responses to oral fat: effects of fructose. Am J Clin Nutr 61:787–791 Harbis A, Defoort C, Narbonne H, et al (2001) Acute hyperinsulinism modulates plasma apolipoprotein B-48 triglyceride-rich lipoproteins in healthy subjects during the postprandial period. Diabetes 50:462–469 Harbis A, Perdreau S, Vincent-Baudry S, et al (2004) Glycemic and insulinemic meal responses modulate postprandial hepatic and intestinal lipoprotein accumulation in obese, insulin-resistant subjects. Am J Clin Nutr 80: 896–902 Westphal S, Kastner S, Taneva E, et al (2004) Postprandial lipid and carbohydrate responses after the ingestion of a caseinenriched mixed meal. Am J Clin Nutr 80:284–290 Mortensen LS, Hartvigsen ML, Brader LJ, et al (2009) Differential effects of protein quality on postprandial lipemia in response to a fat-rich meal in type 2 diabetes: comparison of whey, casein, gluten, and cod protein. Am J Clin Nutr 90:41–48 Holmer-Jensen J, Mortensen LS, Astrup A, et al (2013) Acute differential effects of dietary protein quality on postprandial lipemia in obese non-diabetic subjects. Nutr Res 33:34–40. Lambert JE, Parks EJ (2012) Postprandial metabolism of meal triglyceride in humans. Biochim Biophys Acta 1821:721–726 Miles JM, Nelson RH (2007) Contribution of triglyceride-rich lipoproteins to plasma free fatty acids. Horm Metab Res 39:726–729 Ruge T, Hodson L, Cheeseman J, et al (2009) Fasted to fed trafficking of Fatty acids in human adipose tissue reveals a novel regulatory step for enhanced fat storage. J Clin Endocrinol Metab 94:1781–1788 Nelson RH, Basu R, Johnson CM, et al (2007) Splanchnic spillover of extracellular lipase-generated fatty acids in overweight and obese humans. Diabetes 56:2878–2884 Puga GM, Meyer C, Mandarino LJ, et al (2012) Postprandial spillover of dietary lipid into plasma is increased with moderate amounts of ingested fat and is inversely related to adiposity in healthy older men. J Nutr 142:1806–1811 Carpentier AC (2008) Postprandial fatty acid metabolism in the development of lipotoxicity and type 2 diabetes. Diabetes Metab 34:97–107 Krebs M, Roden M (2005) Molecular mechanisms of lipidinduced insulin resistance in muscle, liver and vasculature. Diabetes Obes Metab 7:621–632 Neal MD, Leaphart C, Levy R, et al (2006) Enterocyte TLR4 mediates phagocytosis and translocation of bacteria across the intestinal barrier. J Immunol 176:3070–3079 Laugerette F, Vors C, Peretti N, et al (2011) Complex links between dietary lipids, endogenous endotoxins and metabolic inflammation. Biochimie 93:39–45 Erridge C, Attina T, Spickett CM, et al (2007) A high-fat meal induces low-grade endotoxemia: evidence of a novel mechanism of postprandial inflammation. Am J Clin Nutr 86:1286–1292 Ghoshal S, Witta J, Zhong J, et al (2009) Chylomicrons promote intestinal absorption of lipopolysaccharides. J Lipid Res 50:90–97 Laugerette F, Vors C, Geloen A, et al (2011) Emulsified lipids increase endotoxemia: possible role in early postprandial lowgrade inflammation. J Nutr Biochem 22:53–59 Zilversmit DB (1979) Atherogenesis: a postprandial phenomenon. Circulation 60:473–485 Lopez-Miranda J, Williams C, Lairon D (2007) Dietary, physiological, genetic and pathological influences on postprandial lipid metabolism. Br J Nutr 98:458–473 Petit V, Niot I, Poirier H, et al (2007) Fatty acids intestinal absorption: facts and uncertainties. Nutrition clinique et métabolique 21:38–45 Jenkins DJ, Wolever TM, Taylor RH, et al (1981) Glycemic index of foods: a physiological basis for carbohydrate exchange. Am J Clin Nutr 34:362–366 Blaak EE, Antoine JM, Benton D, et al (2012) Impact of postprandial glycaemia on health and prevention of disease. Obes Rev 13:923–984 Nazare JA, Normand S, Oste Triantafyllou A, et al (2009) Modulation of the postprandial phase by beta-glucan in overweight subjects: effects on glucose and insulin kinetics. Mol Nutr Food Res 53:361–369 Stratton IM, Adler AI, Neil HA, et al (2000) Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ 321:405–412 Cederberg H, Saukkonen T, Laakso M, et al (2010) Postchallenge glucose, A1C, and fasting glucose as predictors of type 2 diabetes and cardiovascular disease: a 10-year prospective cohort study. Diabetes Care 33:2077–2083 Ning F, Tuomilehto J, Pyorala K, et al (2010) Cardiovascular disease mortality in Europeans in relation to fasting and 2-h plasma glucose levels within a normoglycemic range. Diabetes Care 33:2211–2216 Chiasson JL, Josse RG, Gomis R, et al (2003) Acarbose treatment and the risk of cardiovascular disease and hypertension in patients with impaired glucose tolerance: the STOP-NIDDM trial. JAMA 290:486–494 Monnier L, Mas E, Ginet C, et al (2006) Activation of oxidative stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in patients with type 2 diabetes. JAMA 295:1681–1687 Ceriello A, Taboga C, Tonutti L, et al (2002) Evidence for an independent and cumulative effect of postprandial hypertriglyceridemia and hyperglycemia on endothelial dysfunction and oxidative stress generation: effects of short- and long-term simvastatin treatment. Circulation 106:1211–1218 Brand-Miller J, Hayne S, Petocz P, et al (2003) Low-glycemic index diets in the management of diabetes: a meta-analysis of randomized controlled trials. Diabetes Care 26:2261–2267 Ludwig DS (2002) The glycemic index: physiological mechanisms relating to obesity, diabetes, and cardiovascular disease. JAMA 287:2414–2423 Livesey G, Taylor R, Hulshof T, et al (2008) Glycemic response and health—a systematic review and meta-analysis: relations between dietary glycemic properties and health outcomes. Am J Clin Nutr 87:258S–268S Behall KM, Scholfield DJ, Hallfrisch JG, et al (2006) Consumption of both resistant starch and beta-glucan improves postprandial plasma glucose and insulin in women. Diabetes Care 29: 976–981 Jenkins DJ, Wolever TM, Leeds AR, et al (1978) Dietary fibres, fibre analogues, and glucose tolerance: importance of viscosity. Br Med J 1:1392–1394 Frost GS, Brynes AE, Dhillo WS, et al (2003) The effects of fiber enrichment of pasta and fat content on gastric emptying, GLP-1, glucose, and insulin responses to a meal. Eur J Clin Nutr 57: 293–298 Normand S, Khalfallah Y, Louche-Pelissier C, et al (2001) Influence of dietary fat on postprandial glucose metabolism (exogenous and endogenous) using intrinsically (13)C-enriched durum wheat. Br J Nutr 86:3–11 Nilsson M, Stenberg M, Frid AH, et al (2004) Glycemia and insulinemia in healthy subjects after lactose-equivalent meals of milk and other food proteins: the role of plasma amino acids and incretins. Am J Clin Nutr 80: 1246–1253. Nazare JA, de Rougemont A, Normand S, et al (2010) Effect of postprandial modulation of glucose availability: short- and longterm analysis. Br J Nutr 103: 1461–1470. Nazare JA, Sauvinet V, Normand S, et al (2011) Impact of a resistant dextrin with a prolonged oxidation pattern on day-long ghrelin profile. J Am Coll Nutr 30: 63–72. Vinoy S, Normand S, Meynier A, et al (2013) Cereal Processing Influences Postprandial Glucose Metabolism as Well as the GI Effect. J Am Coll Nutr 32: 79–91. Karhunen LJ, Juvonen KR, Huotari A, et al (2008) Effect of protein, fat, carbohydrate and fibre on gastrointestinal peptide release in humans. Regul Pept 149: 70–78. Wolever TM, Leung J, Vuksan V, et al (2009) Day-to-day variation in glycemic response elicited by white bread is not related to variation in satiety in humans. Appetite 52: 654–658. Brighenti F, Benini L, Del Rio D, et al (2006) Colonic fermentation of indigestible carbohydrates contributes to the second-meal effect. Am J Clin Nutr 83: 817–822. Nilsson AC, Ostman EM, Granfeldt Y, et al (2008) Effect of cereal test breakfasts differing in glycemic index and content of indigestible carbohydrates on daylong glucose tolerance in healthy subjects. Am J Clin Nutr 87: 645–654. Diaz EO, Galgani JE, Aguirre CA (2006) Glycaemic index effects on fuel partitioning in humans. Obes Rev 7: 219–226. van Can JG, van Loon LJ, Brouns F, et al (2012) Reduced glycaemic and insulinaemic responses following trehalose and isomaltulose ingestion: implications for postprandial substrate use in impaired glucose-tolerant subjects. Br J Nutr 108: 1210–1217.