Instrumental neutron activation analysis of soil and sediment samples from Siwa Oasis, Egypt

Wael M. Badawy1, Khaled Ali2, H. El-Samman3, M. V. Frontasyeva4, S. F. Gundorina4, Octavian G. Duliu5
1Nuclear Research Center, Radiation Protection & Civil Defense Dept., Egyptian Atomic Energy Authority (EAEA), Abu Zaabal, Egypt
2Faculty of Science, Radiation Physics Dept., South Valley University, Qena, Egypt
3Faculty of Science, Department of Physics, Menoufia University, Shibin El-koom, Egypt
4Joint Institute for Nuclear research, Dubna, Russia
5Department of Structure of Matter, Earth and Atmospheric Physics and Astrophysics, University of Bucharest, Magurele (Ilfov), Romania

Tóm tắt

Từ khóa


Tài liệu tham khảo

R. Said, The Geology of Egypt (Elsevier, Amsterdam, 1962).

I. A-S. Hussein, M. E-G. Ibrahim, and M. A-H. Mahmoud, “Studies of characteristics of water, soil and plants of the Siwa oasis, Egypt,” Int. J. Environ. Stud. 40, 299 (1992).

H. A. M. Ibrahim and G. E. Kamh, “Geoenvironmental studies on conservation of archaeological sites at Siwa oasis, Egypt,” Environ. Geol. 49, 511 (2006).

T. Rabeh, “Using 3-D magnetic modeling to evaluate subsurface structures of the Siwa oasis, Western desert, Egypt,” Sci. Chin. Earth Sci. 55, 279 (2012).

G. P. Nabhan, “Agrobiodiversity change in a Saharan desert oasis, 1919–2006: historic shifts in Tasiwit (Berber) and Bedouin crop inventories of Siwa, Egypt,” Econ. Bot. 61, 31 (2007).

IAEA-TECDOC-1415, Soil Sampling for Environmental Contaminants (2004), p. 12.

M. V. Frontasyeva, “Neutron activation analysis for the life sciences. A review,” Phys. Part. Nucl. 42, 223 (2011). www.springerlink.com/content/f836723234434m27

S. S. Pavlov, A. Yu. Dmitriev, I. A. Chepurchenko, and M. V. Frontasyeva, “Automation system for measurement of gamma-ray spectra of induced activity for neutron activation analysis at the reactor IBRr-2 of Frank Laboratory of neutron physics at the Joint Institute for Nuclear Research,” Phys. Part. Nucl. Lett. (accepted).

J. C. Davies, Statistics and Data Analysis in Geology (Wiley, New York, 2003).

S. Taylor and S. McLennan, The Continental Crust: Its Composition and Evolution (Blackwell, Oxford, 1991).

K. C. Condie, “Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales,” Chem. Geol. 104, 1 (1993).

P. L. Gormet et al., “The North American shale composit: its composition, major, and trace element characteristics,” Geochim. Cosmochim. Acta 48, 2469 (1984).

A. P. Vinogradov, The Geochemistry of Rare and Dispersed Chemical Elements in Soil (Consultants Bureau, New York, 1959).

O. G. Duliu, E. Steinnes, and M. V. Frontasyeva, in press.

M. R. Bhatia and K. A. W. Crook, “Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins,” Contribut. Mineral. Petrol. 92, 181 (1986).

X. X. Gu, J. M. Liu, M. H. Zheng, J. X. Tang, and L. Qi, “Provenance and tectonic setting of the proterozoic turbidites in Hunan, South China: geochemical evidence,” J. Sedim. Res. 72, 393 (2002).

W. Wang, C. F. Fukun, R. Hu, Y. Chu, and Y. Z. Yang, “Provenance and tectonic setting of neoproterozoic sedimentary sequences in the South China Block: evidence from detrital zircon ages and Hf-Nd isotopes,” Int. J. Earth Sci. 101, 1723 (2012).

R. L. Cullers, “The chemical signature of source rocks in size fractions of holocene stream sediment derived from metamorphic rocks in the Wet Mountains region, Colorado, USA,” Chem. Geol. 113, 327 (1994).