Instrumental approach toward understanding nano-pollutants

Springer Science and Business Media LLC - Tập 2 - Trang 1-17 - 2017
Mitra Naghdi1, Sabrine Metahni1, Yassine Ouarda1, Satinder K. Brar1, Ratul Kumar Das1, Maximiliano Cledon1
1INRS-ETE, Université du Québec, Quebec, Canada

Tóm tắt

Nano-pollutants (NPLTs) have recently raised global concerns due to their possible harmful impact on environment and human health. However, until date, information on the occurrence, fate and toxicity of NPLTs in environment is scant. The knowledge gap can be attributed to the lack of advanced and sophisticated methodologies for the precise detection and characterization of NPLTs at lower concentration in complex matrices, such as surface water, wastewater, soil and food. This review briefly discusses the performance of classical methods for characterization and study of the properties of NPLTs. The important properties include shape, size, aggregation state, chemical composition and structure. Chromatographic, microscopic and spectroscopic techniques have been developed for detection and quantitative estimation of fabricated or naturally existed NPLTs in different matrices. Often, combination of these techniques is required for the separation, purification and accurate estimation. For better detection and understanding of the initial steps of interaction with the environmental matrices, pollution sources, such as wastewater and industrial discharges, must be selected as sampling points. Understanding the dynamics of agglomeration, and decantation will allow to estimate the plume of transport to delimit the potential effects.

Tài liệu tham khảo

Abécassis B, Testard F, Spalla O, Barboux P (2007) Probing in situ the nucleation and growth of gold nanoparticles by small-angle S-ray scattering. Nano Lett 7(6):1723–1727. doi:10.1021/nl0707149 Ahamed M (2013) Silica nanoparticles-induced cytotoxicity, oxidative stress and apoptosis in cultured A431 and A549 cells. Hum Exp Toxicol 32(2):186–195 Andrievsky GV, Klochkov VK, Bordyuh AB, Dovbeshko GI (2002) Comparative analysis of two aqueous-colloidal solutions of C60 fullerene with help of FTIR reflectance and UV–Vis spectroscopy. Chem Phys Lett 364(1–2):8–17. doi:10.1016/S0009-2614(02)01305-2 Ang ML, Miller JT, Cui Y, Moc L, Kawi S (2015) Bimetallic Ni–Cu alloy nanoparticles supported on silica for the water-gas shift reaction: activating surface hydroxyls via enhanced CO adsorption. Catal Sci Technol. doi:10.1039/C5CY01885D Angeles-Islas J, Velasquez-Rodriguez CG, Calderon HA (2007) Synthesis and characterization of metallic nanoparticles of Cu, Co and Cu-Co by reactive milling. Nanotechnol Workshop 4:273–276 APHL (2015) Nanotechnology and environmental health laboratories. Association of Public Health Laboratories, Silver Spring, p 39 Balnois E, Wilkinson KJ (2002) Sample preparation techniques for the observation of environmental biopolymers by atomic force microscopy. Colloids Surf Physicochem Eng Asp 207(1–3):229–242. doi:10.1016/S0927-7757(02)00136-X Barth HG, Boyes BE (1992) Size exclusion chromatography. Anal Chem 64(12):428R–442R. doi:10.1021/ac00036a023 Batley GE, McLaughlin MJ (2010) CSIRO Niche Manufacturing Flagship Report: fate of manufactured nanomaterials in the Australian environment. Prepared for the Department of the Environment, Ware, Heritage and the Arts Bibikov MN, Kuchenko KM, Kiselev SA (2013) Report on the state of the environment in Primorsky Krai in 2000–2008. Primorsky Krai/committee on Environmental Protection and Natural Resources, Vladivostok Russian Bogner A, Thollet G, Basset D, Jouneau PH, Gauthier C (2005) Wet STEM: a new development in environmental SEM for imaging nano-objects included in a liquid phase. Ultramicroscopy 104(3–4):290–301. doi:10.1016/j.ultramic.2005.05.005 Bootz A, Vogel V, Schubert D, Kreuter J (2004) Comparison of scanning electron microscopy, dynamic light scattering and analytical ultracentrifugation for the sizing of poly(butyl cyanoacrylate) nanoparticles. Eur J Pharm Biopharm 57(2):369–375. doi:10.1016/S0939-6411(03)00193-0 Botta C, Labille J, Auffan M, Borschneck D, Miche H, Cabié M, Masion A, Rose J, Bottero J-Y (2011) TiO2-based nanoparticles released in water from commercialized sunscreens in a life-cycle perspective: structures and quantities. Environ Pollut 159(6):1543–1550. doi:10.1016/j.envpol.2011.03.003 Brant J, Lecoanet H, Wiesner MR (2005) Aggregation and deposition characteristics of fullerene nanoparticles in aqueous systems. J Nanopart Res 7(4):545–553. doi:10.1007/s11051-005-4884-8 Brayner R, Ferrari-Iliou R, Brivois N, Djediat S, Benedetti MF, Fiévet F (2006) Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett 6(4):866–870. doi:10.1021/nl052326h Buzea C, Pacheco Blandino II, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2(4):MR17–MR172 Calderon B, Fullana A (2015) Heavy metal release due to aging effect during zero valent iron nanoparticles remediation. Water Res 83:1–9. doi:10.1016/j.watres.2015.06.004 Carlson C, Hussain SM, Schrand AM, Lk Braydich-Stolle, Hess KL, Jones RL, Schlager JJ (2008) Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem 112(43):13608–13619 Carter RS, Harley SJ, Power PP, Augustine MP (2005) Use of NMR spectroscopy in the synthesis and characterization of air- and water-stable silicon nanoparticles from porous silicon. Chem Mater 17(11):2932–2939. doi:10.1021/cm040377u Chen Y, Shah N, Huggins FE, Huffman GP (2005) Transmission electron microscopy investigation of ultrafine coal fly ash particles. Environ Sci Technol 39(4):1144–1151. doi:10.1021/es049871p Chenari HM, Sanchez-Bajo F (2016) Microstructural study od SnO2-based nanoparticles by X-ray diffractometry. Mater Sci Semicond Process 49:15–19 Chengh X, Kan AT, Tomson MB (2005) Study of C60 transport in porous media and the effect of sorbed C60 on naphthalene transport. Mater Res Soc 20:3244–3254. doi:10.1557/jmr.2005.0402 Choi JE, Kim S, Ahn JH, Youn P, Kang JS, Park K, Yi J, Ryu D-Y (2010) Induction of oxidative stress and apoptosis by silver nanoparticles in the liver of adult zebrafish. Aquat Toxicol 100(2):151–159. doi:10.1016/j.aquatox.2009.12.012 Christian P, Von der Kammer F, Baalousha M, Hofmann T (2008) Nanoparticles: structure, properties, preparation and behaviour in environmental media. Ectoxicology 17:326–343. doi:10.1007/s10646-008-0213-1 Chu B, Liu T (2000) Characterization of nanoparticles by scattering techniques. J Nanopart Res 2:29–41 Chuklanov AP, Ziganshina SA, Bukharaev AA (2006) Computer program for the grain analysis of AFM images of nanoparticles placed on a rough surface. Surf Interface Anal 38:679–681 Chuto G, Chaumet-Riffaud P, (SFMN) GOdlSfdmneim (2010) Revue générale: Les nanoparticules. Méd Nucl 34:370–376 Colvin VL (2003) The potential environmental impact of engineered nanomaterials. Nat Biotechnol 21(10):1166–1170. doi:10.1038/nbt875 Daqiao H, Jizhi L, Shan J, Yanlei H, Wenjun W, Rongrong W, Bo Y (2016) Synthesis, structure and optical data storage properties of silver nanoparticles modified with azobenzene thiols. Mater Chem Phys 170:108–112. doi:10.1016/j.matchemphys.2015.12.025 De Momi A, Lead JR (2006) Size fractionation and characterisation of fresh water colloids and particles: split-flow thin-cell and electron microscopy analyses. Environ Sci Technol 40(21):6738–6743. doi:10.1021/es061181t Di Virgilio AL, Reigosa M, Arnal PM, Lorenzo Fernández, de Mele M (2010) Comparative study of the cytotoxic and genotoxic effects of titanium oxide and aluminium oxide nanoparticles in Chinese hamster ovary (CHO-K1) cells. J Hazard Mater 177(1–3):711–718. doi:10.1016/j.jhazmat.2009.12.089 Doucet FJ, Lead JR, Maguire L, Achterberg EP, Millward GE (2005) Visualisation of natural aquatic colloids and particles—a comparison of conventional high vacuum and environmental scanning electron microscopy. J Environ Monit 7(2):115–121. doi:10.1039/B413832E Dowling A, Clift R, Grobert N, Hutton D, Oliver R, O’neill O, Pethica J, Pidgeon N, Porritt J, Ryan J (2004) Nanoscience and nanotechnologies: opportunities and uncertainties. Lond R Soc Roy Acad Eng Rep 61:e64 Dunphy Guzman KA, Finnegan MP, Banfield JF (2006) Influence of surface potential on aggregation and transport of titania nanoparticles. Environ Sci Technol 40(24):7688–7693. doi:10.1021/es060847g Eom H-J, Choi J (2009) Oxidative stress of CeO2 nanoparticles via p38-Nrf-2 signaling pathway in human bronchial epithelial cell, Beas-2B. Toxicol Lett 187(2):77–83. doi:10.1016/j.toxlet.2009.01.028 Ershova ES, Sergeeva VA, Chausheva AI, Zheglo DG, Nikitina VA, Smirnova TD, Kameneva LV, Porokhovnik LN, Kutsev SI, Troshin PA, Voronov II, Khakina EA, Veiko NN, Kostyuk SV (2016) Toxic and DNA damaging effects of a functionalized fullerene in human embryonic lung fibroblasts. Mutat Res, Genet Toxicol Environ Mutagen. doi:10.1016/j.mrgentox.2016.05.004 Filella M, Zhang J, Newman ME, Buffle J (1997) Analytical applications of photon correlation spectroscopy for size distribution measurements of natural colloidal suspensions: capabilities and limitations. Colloids Surf Physicochem Eng Asp 120(1–3):27–46. doi:10.1016/S0927-7757(96)03677-1 Gatti AM, Kirkpatrick J, Gambarelli A, Capitani F, Hansen T, Eloy R, Clermont G (2008) ESEM evaluations of muscle/nanoparticles interface in a rat model. J Mater Sci Mater Med 19(4):1515–1522. doi:10.1007/s10856-008-3385-6 Ge S, Wang G, Shen Y, Zhang Q, Jia D, Wang H, Dong Q, Yin T (2011) Cytotoxic effects of MgO nanoparticles on human umbilical vein endothelial cells in vitro. IET Nanobiotechnol 5(2):36–40 Gelderman MP, Simakova O, Clogston JD, Patri AK, Siddiqui SF, Vostal AC, Simak J (2008) Adverse effects of fullerenes on endothelial cells: fullerenol C60(OH)24 induced tissue factor and ICAM-1 membrane expression and apoptosis in vitro. Orig Res 3(1):59–68 Gong N, Shao K, Feng W, Lin Z, Liang C, Sun Y (2011) Biotoxicity of nickel oxide nanoparticles and bio-remediation by microalgae Chlorella vulgaris. Chemosphere 83(4):510–516. doi:10.1016/j.chemosphere.2010.12.059 Greco F, Courbière B, Rose J, Orsière T, Sari-Minodier I, Bottero JY (2015) Reprotoxicité des nanoparticules. Gynécol Obstét Fertil 43:49–55. doi:10.1016/j.gyobfe.2014.11.014 Haiss W, Thanh NTK, Aveyard J, Fernig DG (2007) Determination of size and concentration of gold nanoparticles from UV–Vis spectra. Anal Chem 79(11):4215–4221. doi:10.1021/ac0702084 Hansen SF, Larsen BH, Olsen SI, Baun A (2007) Categorization framework to aid hazard identification of nanomaterials. Nanotoxicology. doi:10.1080/17435390701727509 Harris AT, Bali R (2008) On the formation and extent of uptake of silver nanoparticles by live plants. Nanopart Res 10:691–695. doi:10.1007/s11051-007-9288-5 Havrdova M, Hola K, Skopalik J, Tomankova K, Petr M, Cepe K, Polakova K, Tucek J, Bourlinos AB, Zboril R (2016) Toxicity of carbon dots—effect of surface functionalization on the cell viability, reactive oxygen species generation and cell cycle. Carbon 99:238–248. doi:10.1016/j.carbon.2015.12.027 Hendren CO, Mesnard X, DrÖge J, Wiesner MR (2011) Estimating production data for five engineered nanomaterials as a basic for exposure assessment. Environ Sci Technol 45:2562–2569 Henke AM (2007) Nanotechnologies, ethnics and politics. Publié par l’organisation des Nations Unies pour l’éducation, la science et la culture, Paris Herman D, Walz JY (2015) Forces and force-scaling in systems of adsorbing nanopartcles as measured using colloidal probe atomic force microscopy. Colloids Surf A 482:165–176 Hower JC, Graham UM, Dozier A, Tseng MT, Khatri RA (2008) Association of the sites of heavy metals with nanoscale carbon in a Kentucky electrostatic precipitator fly ash. Environ Sci Technol 42(22):8471–8477. doi:10.1021/es801193y Hu X, Liu J, Mayer P, Jiang G (2008) Impacts of some environmentally relevant parameters on the sorption of polycyclic aromatic hydrocarbons to aqueous suspensions of fullerene. Environ Toxicol Chem 27:1868–1874. doi:10.1897/08-009.1 Huang H-L, Wang HP, Eyring EM, Chang J-E (2009) Recovery of nanosize zinc from phosphor wastes with an ionic liquid. Environ Chem 6(3):268–272. doi:10.1071/EN08098 Huang H-L, Wang HP, Wei G-T, Sun IW, Huang J-F, Yang YW (2006) Extraction of nanosize copper pollutants with an ionic liquid. Environ Sci Technol 40(15):4761–4764. doi:10.1021/es060034s Huang X, McLean RS, Zheng M (2005) High-resolution length sorting and purification of DNA-wrapped carbon nanotubes by size-exclusion chromatography. Anal Chem 77(19):6225–6228. doi:10.1021/ac0508954 INERIS (2007) Nanotechnologies, Nanomatériaux, Nanoparticules. Quels impacts ? sur l’homme et l’environnement. Institut national de l’environnement industriel et des risques, Verneuil Raloff J (2012) Nanopollutants harm vessel health. In: The News Environment/Society of toxicology annual meeting, San Fransisco, p 2 Jackson BP, Ranville JF, Bertsch PM, Sowder AG (2005) Characterization of colloidal and humic-bound Ni and U in the “dissolved” fraction of contaminated sediment extracts. Environ Sci Technol 39(8):2478–2485. doi:10.1021/es0485208 Jassby D, Farner Budarz J, Wiesner M (2012) Impact of aggregate size and structure on the photocatalytic properties of TiO2 and ZnO nanoparticles. Environ Sci Technol 46(13):6934–6941. doi:10.1021/es202009h Jearanaikoon S, Abraham-Peskir JV (2005) An X-ray microscopy perspective on the effect of glutaraldehyde fixation on cells. J Microsc 218(2):185–192 Jearanaikoon S, Braham-Peskir JV (2005) An X-ray microscopy perspective on the effect of glutaraldehyde fixation on cells. J Microsc 218:185–192 José-Yacamán M, Marın-Almazo M, Ascencio JA (2001) High resolution TEM studies on palladium nanoparticles. J Mol Catal A: Chem 173(1–2):61–74. doi:10.1016/S1381-1169(01)00145-5 Kaegi R, Ulrich A, Sinnet B, Vonbank R, Wichser A, Zuleeg S, Simmler H, Brunner S, Vonmont H, Burkhardt M, Boller M (2008) Synthetic TiO2 nanoparticle emission from exterior facades into the aquatic environment. Environ Pollut 156(2):233–239. doi:10.1016/j.envpol.2008.08.004 Kammler HK, Beaucage G, Mueller R, Pratsinis SE (2004) Structure of flame-made silica nanoparticles by ultra-small-angle X-ray scattering. Langmuir 20(5):1915–1921. doi:10.1021/la030155v Karlsson HL, Gustafsson J, Cronholm P, Möller L (2009) Size-dependent toxicity of metal oxide particles—a comparison between nano- and micrometer size. Toxicol Lett 188(2):112–118. doi:10.1016/j.toxlet.2009.03.014 Kato H, Fujita K, Horie M, Suzuki M, Nakamura A, Endoh S, Yoshida Y, Iwahashi H, Takahashi K, Kinugasa S (2010) Dispersion characteristics of various metal oxide secondary nanoparticles in culture medium for in vitro toxicology assessment. Toxicol In Vitro 24(3):1009–1018. doi:10.1016/j.tiv.2009.12.006 Kattan N, Hou B, Fermin DJ, Cherns D (2015) Crystal structure and defects visualization of CU2ZnSnS4 nanoparticles employing transmission electron microscopy and electron diffraction. Appl Mater Today 1:52–59 Keller AA, Wang H, Zhou D, Lenihan HS, Cherr G, Cardinale BJ, Miller R, Ji Z (2010) Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. Environ Sci Technol 44(6):1962–1967. doi:10.1021/es902987d Kim B, Murayama M, Colman BP, Hochella MF (2012) Characterization and environmental implications of nano- and larger TiO2 particles in sewage sludge, and soils amended with sewage sludge. J Environ Monit 14(4):1128–1136. doi:10.1039/C2EM10809G Koelmans AA, Nowack B, Wiesner MR (2009) Comparison of manufactured and black carbon nanoparticle concentrations in aquatic sediments. Environ Pollut 157(4):1110–1116. doi:10.1016/j.envpol.2008.09.006 Krichner C, Liedl T, Kudera S, Pellegrino T, Munoz Javier A, Gaub H, Stolzle S, Fertig N, Parak WJ (2005) Cytotoxicity of colloidal CdSe ans CdSe/ZnS nanoparticles. Nano Lett 5(2):331–338. doi:10.1021/nl047996m Krueger KM, Al-Somali AM, Falkner JC, Colvin VL (2005) Characterization of nanocrystalline CdSe by size exclusion chromatography. Anal Chem 77(11):3511–3515. doi:10.1021/ac0481912 Kumar J, Mallampati R, Adin A, Valiyaveettil S (2014) Functionalized carbon spheres for extraction of nanoparticles and catalyst support in water. ACS Sustain Chem Eng 2(12):2675–2682. doi:10.1021/sc5004242 Kuyper CL, Budzinski KL, Lorenz RM, Chiu DT (2006) Real-time sizing of nanoparticles in microfluidic channels using confocal correlation spectroscopy. J Am Chem Soc 128(3):730–731. doi:10.1021/ja0569252 Kuyper CL, Fujimoto BS, Zhao Y, Schiro PG, Chiu DT (2006) Accurate sizing of nanoparticles using confocal correlation spectroscopy. J Phys Chem B 110(48):24433–24441. doi:10.1021/jp064865w Lanone S, Boczkowski J (2010) Les sources de nanoparticules. Rev Fr d’allergologie 50:211–213 Larue C, Castillo-Michel H, Steinc RJ, Fayard B, Pouyet E, Villanova J, Magnina V, Pradas del Real AE, Trcera N, Legros S, Sorieul S, Sarret G (2016) Innovative combination of spectroscopic techniques to reveal nanoparticle fate in a crop plant. Spectrochim Acta, Part B 119:17–24 Lead JR, Smith E (2009) Environmental and human health impacts of nanotechnology. Blackwell, New York Lead JR, Wilkinson KJ (2006) Aquatic colloids and nanoparticles: current knowledge and future trends. Environ Chem 3(3):159–171. doi:10.1071/EN06025 Lead JR, Wilkinson KJ, Balnois E, Cutak BJ, Larive CK, Assemi S, Beckett R (2000) Diffusion coefficients and polydispersities of the Suwannee River fulvic acid: comparison of fluorescence correlation spectroscopy, pulsed-field gradient nuclear magnetic resonance, and flow field-flow fractionation. Environ Sci Technol 34(16):3508–3513. doi:10.1021/es991195h Ledin A, Karlsson S, Düker A, Allard B (1994) Measurements in situ of concentration and size distribution of colloidal matter in deep groundwaters by photon correlation spectroscopy. Water Res 28(7):1539–1545. doi:10.1016/0043-1354(94)90220-8 Li Bassi A, Cattaneo D, Russo V, Bottani CE, Barborini E, Mazza T, Piseri P, Milani P, Ernst FO, Wegner K, Pratsinis SE (2005) Raman spectroscopy characterization of titania nanoparticles produced by flame pyrolysis: the influence of size and stoichiometry. J Appl Phys 98(7):074305. doi:10.1063/1.2061894 Li X, Elliott DW, Zhang WX (2006) Zero-valent iron nanoparticles for abatement of environmental pollutants: materials and engineering aspects. Crit Rev Solid State Mater Sci 31(4):111–122. doi:10.1080/10408430601057611 Limbach LK, Wick P, Manser P, Grass RN, Stark WJ (2007) Exposure of engineered nanoparticles to human lung epithelial cells: influence of chemical composition and catalytic activity on oxidative stress. Environ Sci Technol 41:4158–4163 Lin D, Xing B (2009) Root uptake and phototoxicity of ZnO nanoparticles. Environ Sci Technol 42(15):5580–5585. doi:10.1021/es800422x Liu J (2005) Scanning transmission electron microscopy and its application to the study of nanoparticles and nanoparticle systems. J Electron Microsc 54(3):251–278. doi:10.1093/jmicro/dfi034 Lovern SB, Strickler JR, Klaper R (2007) Behavioral and physiological changes in Daphnia magna when exposed to nanoparticles suspensions (Titanium Dioxide, Nano-C60 and C60HxC70Hx). Environ Sci Technol 41:4465–4470. doi:10.1021/es062146p Lowry GV, Gregory KB, Apte SC, Lead JR (2012) Transformations of nanomaterials in the environment. Environ Sci Technol 46:6893–6899. doi:10.1021/es300839e Lyven B, Hassellov M, Turner DR, Haraldsson C, Andersson K (2003) Competition between iron- and carbon-based colloidal carriers for trace metals in a freshwater assessed using flow fieldflow fractionation coupled to ICPMS. Geochim Cosmochim Acta 67:3791–3802 Ortner HM, Hoffmann P, Weinbruch S, Stadermann FJ, Wentzel M (1998) Chemical characterization of environmental and industrial particulate samples[dagger]. Analyst 123(5):833–842. doi:10.1039/A707457C Mallampati R, Valiyaveettil S (2015) Co-precipitation with calcium carbonate—a fast and nontoxic method for removal of nanopollutants from water? R Soc Chem 5:11023–11028 Mavrocordatos D, Pronk W, Boller M (2004) Analysis of environmental particles by atomic force microscopy, scanning and transmission electron microscopy. Water Sci Technol 50(12):9–18 McKenzie LC, Haben PM, Kevan SD, Hutchison JE (2010) Determining nanoparticle size in real time by small-angle X-ray scattering in a microscale flow system. J Phys Chem C 114(50):22055–22063. doi:10.1021/jp1077533 MEDD (2006) Nanotechnologies, Nanoparticules, Quels danger, Quels risques?. Ministère de l’écologie et du développement durableI, Paris Monteiro-Riviere NA, Tran Lang C (2007) Nanotoxicology: characterization, dosing and health effects. Informa Healthcare, New York Murdock RC, Braydich-Stolle L, Schrand AM, Schlager JJ, Hussain SM (2008) Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicol Sci 101(2):239–253. doi:10.1093/toxsci/kfm240 Nemmar A, Hoet PHM, Vanquickenborne B, Dinsdale D, Thomeer M, Hoylaerts MF, Vanbilloen H, Mortelmans L, Nemery B (2002) Passage of inhaled particles into the blood circulation in humans. Circulation 105(4):411–414. doi:10.1161/hc0402.104118 Nemmar A, Vanbilloen H, Hoylaerts MF, Hoet PHM, Verbruggen A, Nemery B (2001) Passage of intratracheally instilled ultrafine particles from the lung into the systemic circulation in hamster. Am J Respir Crit Care Med 164(9):1665–1668. doi:10.1164/ajrccm.164.9.2101036 Nowack B, Bucheli TD (2007) Occurence behaviour and effects of nanoparticles in the environment. Environ Pollut 150:5–22. doi:10.1016/j.envpol.2007.06.006 Nurmi JT, Tratnyek PG, Sarathy V, Baer DR, Amonette JE, Pecher K, Wang C, Linehan JC, Matson DW, Penn RL, Driessen MD (2005) Characterization and properties of metallic iron nanoparticles: spectroscopy, electrochemistry, and kinetics. Environ Sci Technol 39(5):1221–1230. doi:10.1021/es049190u Ostiguy C, Lapointe G, Ménard L, Cloutier Y, Trottier M, Boutin M, Antoun M, Normand C (2006) Rapport: Les nanoparticules: Connaissances actuelles sur les risques et les mesures de prévention en santé et sécurité du travail. IRSST, Québec, p 79 Padmavathy N, Vijayaraghavan R (2008) Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study. Sci Technol Adv Mater 9:035004 Pan Z, Lee W, Slutsky L, Clark RAF, Pernodet N, Rafailovich MH (2009) Adverse effects of titanium dioxide nanoparticles on human dermal fibroblasts and how to protect cells. Small 5(4):511–520 Paunov VN, Cayre OJ, Noble PF, Stoyanov SD, Velikov KP, Golding M (2007) Emulsions stabilised by food colloid particles: role of particle adsorption and wettability at the liquid interface. J Colloid Interface Sci 312(2):381–389. doi:10.1016/j.jcis.2007.03.031 Periasamy VS, Athinarayanan J, Alfawaz MA, Alshatwi AA (2016) Carbon nanoparticle induced cytotoxicity in human mesenchymal stem cells through upregulation of TNF3, NFKBIA and BCL2L1 genes. Chemosphere 144:275–284. doi:10.1016/j.chemosphere.2015.08.018 Perminova IV, Frimmel FH, Kudryavtsev AV, Kulikova NA, Abbt-Braun G, Hesse S, Petrosyan VS (2003) Molecular weight characteristics of humic substances from different environments as determined by size exclusion chromatography and their statistical evaluation. Environ Sci Technol 37(11):2477–2485. doi:10.1021/es0258069 Pesika NS, Stebe KJ, Searson PC (2003) Relationship between absorbance spectra and particle size distributions for quantum-sized nanocrystals. J Phys Chem B 107(38):10412–10415. doi:10.1021/jp0303218 Phenrat T, Saleh N, Sirk K, Tilton RD, Lowry GV (2007) Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environ Sci Technol 41(1):284–290. doi:10.1021/es061349a Piccinno F, Gottschalk F, Seeger S, Nowack B (2012) Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. J Nanopart Res 14:1109 Pinheiro JP, Domingos R, Lopez R, Brayner R, Fiévet F, Wilkinson K (2007) Determination of diffusion coefficients of nanoparticles and humic substances using scanning stripping chronopotentiometry (SSCP). Colloids Surf Physicochem Eng Asp 295(1–3):200–208. doi:10.1016/j.colsurfa.2006.08.054 Poland CA, Duffin R, Kinolch I, Maynard A, Wallace WAH, Seaton A, Stone V, Brown S, Macnee W, Donaldson K (2008) Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol. doi:10.1038/nnano.2008.111 Prasad KPS, Dhawale DS, Sivakumar T, Aldeyab SS, Zaidi JSM, Ariga K, Vinu A (2011) Fabrication and textural characterization of nanoporous carbon electrodes embedded with CuO nanoparticles for supercapacitors. Sci Technol Adv Mater 12(4):044602 Qureshi ZS, DSouza R, Mallampati R, Valiyaveettil S (2014) Synthesis of amine-functionalized block coplymers for nanopollutant removal from water. J Appl Polym Sci 131(20):1–9 Rao Y, Antalek B, Minter J, Mourey T, Blanton T, Slater G, Slater L, Fornalik J (2009) Organic solvent-dispersed TiO2 nanoparticle characterization. Langmuir 25(21):12713–12720. doi:10.1021/la901783g Rezić I (2011) Determination of engineered nanoparticles on textiles and in textile wastewaters. TrAC Trends Anal Chem 30(7):1159–1167. doi:10.1016/j.trac.2011.02.017 Ryu S-Y, Kim DS, Jeon J-D, Kwak S-Y (2010) Pore size distribution analysis of mesoporous TiO2 spheres by 1H nuclear magnetic resonance (NMR) cryoporometry. J Phys Chem C 114(41):17440–17445. doi:10.1021/jp105496h Satinder KB, Verma M (2011) Mesurement of nanoparticles by light-scattering techniques. Trend Anal Chem 30(1):4–17. doi:10.1016/j.trac.2010.08.008 Satpati B, Bhattacherjee A, Roy M (2015) Synthesis of nano-crystalline materials in open-air laboratory: a case study of Tobacco. J Nanosci Nanotechnol 15(2):1362–1367 Schmid K, Riediker M (2008) Use of nanoparticles in Swiss industry: a targeted survey. Environ Sci Technol 42(7):2253–2260 Schurtenberger P, Newman ME (1993) Characterization of biological and environmental particles using static and dynamic light scattering. In: Buffle J, van Leeuwen HP (eds) Environmental particles. Lewis Publishers, Boca Raton Serpone N, Salinaro A, Emeline A (2001) Deleterious effects of sunscreen titanium dioxide nanoparticles on DNA. Efforts to limit DNA damage by particle surface modification, in nanoparticles and nanostructured surfaces. Novel Rep Biol Appl 2:86–98. doi:10.1117/12.430765 Song Y, Heien MLAV, Jimenez V, Wightman RM, Murray RW (2004) Voltammetric detection of metal nanoparticles separated by liquid chromatography. Anal Chem 76(17):4911–4919. doi:10.1021/ac049223o Song Y, Jimenez V, McKinney C, Donkers R, Murray RW (2003) Estimation of size for 1–2 nm nanoparticles using an HPLC electrochemical detector of double layer charging. Anal Chem 75(19):5088–5096. doi:10.1021/ac034114f Stone V, Johnston H, Clift MJD (2007) Air pollution, ultrafine and nanoparticle toxicology: cellular and molecular intercations. IEEE Trans Nanobiosci 6:331–340. doi:10.1109/TNB.2007.909005 Tan A, Chawla R, Natasha G, Mahdibeiraghdar S, Jeyaraj R, Rajadas J, Hamblin MR, Seifalian AM (2016) Nanotechnology and regenerative therapeutics in plastic surgery: the next frontier. J Plast Reconstr Aesthet Surg 60:1–13. doi:10.1016/j.bjps.2015.08.028 Taze C, Panetas I, Kalogiannis S, Feidantsis K, Gallios GP, Kastrinaki G, Konstandopoulos AG, Václavíková M, Ivanicova L, Kaloyianni M (2016) Toxicity assessment and comparison between two types of iron oxide nanoparticles in Mytilus galloprovincialis. Aquat Toxicol 172:9–20. doi:10.1016/j.aquatox.2015.12.013 Theodore L, Kunz GK (2005) Nanotechnology: environmental implications and solutions. Wiley, New Jersey Thiberge S, Nechushtan A, Sprinzak D, Gileadi O, Behar V, Zik O, Chowers Y, Michaeli S, Schlessinger J, Moses E (2004) Scanning electron microscopy of cells and tissues under fully hydrated conditions. Proc Natl Acad Sci USA 101(10):3346–3351. doi:10.1073/pnas.0400088101 Thiberge S, Zik O, Moses E (2004) An apparatus for imaging liquids, cells, and other wet samples in the scanning electron microscopy. Rev Sci Instrum 75(7):2280–2289. doi:10.1063/1.1763262 Thieme J, McNult I, Vogt S, Paterson David (2007) X-ray spectromicroscopy—a tool for environmental sciences. Environ Sci Technol 41(20):6885–6889. doi:10.1021/es0726254 Thieme J, Schneider G, Knöchel C (2003) X-ray tomography of a microhabitat of bacteria and other soil colloids with sub-100 nm resolution. Micron 34(6–7):339–344. doi:10.1016/S0968-4328(03)00061-1 Thio BJR, Montes MO, Mahmoud MA, Lee D-W, Zhou D, Keller AA (2012) Mobility of capped silver nanoparticles under environmentally relevant conditions. Environ Sci Technol 46(13):6985–6991. doi:10.1021/es203596w Tiede K, Boxall ABA, Tear SP, Lewis J, David H, Hassellöv M (2008) Detection and characterization of engineered nanoparticles in food and the environment. Food Addit Contam Part A 25(7):795–821. doi:10.1080/02652030802007553 Tomaszewska E, Soliwoda K, Kadziola K, Tkacz-Szczesna B, Celichowski G, Cichomski M, Szmaja W, Grobelny J (2013) Detection limits of DLS and UV–Vis spectroscopy in characterization of polydisperse nanoparticles colloids. J Nanomater 2013:1–10 Üner M (2016) Characterization and imaging of solid lipid nanoparticles and nanostructured lipid carriers. In: Handbook of nanoparticles. Springer, Switzerland, pp 117–141 Valentini M, Vaccaro A, Rehor A, Napoli A, Hubbell JA, Tirelli N (2004) Diffusion NMR spectroscopy for the characterization of the size and interactions of colloidal matter: the case of vesicles and nanoparticles. J Am Chem Soc 126(7):2142–2147. doi:10.1021/ja037247r Venkateswarlu M, Chen CH, Do JS, Lin CW, Chou TC, Hwang BJ (2005) Electrochemical properties of nano-sized Li4Ti5O12 powders synthesized by a sol–gel process and characterized by X-ray absorption spectroscopy. J Power Sources 146(1–2):204–208. doi:10.1016/j.jpowsour.2005.03.016 Wang C, Shang C, Westerhoff P (2010) Quantification of fullerene aggregate nC60 in wastewater by high-performance liquid chromatography with UV–Vis spectroscopic and mass spectrometric detection. Chemosphere 80(3):334–339. doi:10.1016/j.chemosphere.2010.03.052 Weckhuysen BM (2004) Ultraviolet–visible spectroscopy. American Scientific Publishers, Stevenson Ranch, pp 255–270 Weng X, Jin X, Lin J, Naidu R, Chen Z (2016) Removal of mixed contaminants Cr(VI) and Cu(II) by green synthesized iron based nanoparticles. Ecol Eng 97:32–39. doi:10.1016/j.ecoleng.2016.08.003 Wigginton NS, Haus KL, Hochella MF Jr (2007) Aquatic environmental nanoparticles. J Environ Monit 9(12):1306–1316. doi:10.1039/B712709J Wilkinson KJ, Lead JR (2007) Environmental colloids and particles. In: Buffle J, van Leeuwen HP (eds) Analytical and physical chemistry of environmental system. Wiley, England Wu S-H, Chen D-H (2004) Synthesis of high-concentration Cu nanoparticles in aqueous CTAB solutions. J Colloid Interface Sci 273(1):165–169. doi:10.1016/j.jcis.2004.01.071 Wu ZY, Zhang J, Ibrahim K, Xian DC, Li G, Tao Y, Hu TD, Bellucci S, Marcelli A, Zhang QH, Gao L, Chen ZZ (2002) Structural determination of titanium-oxide nanoparticles by X-ray absorption spectroscopy. Appl Phys Lett 80(16):2973–2975. doi:10.1063/1.1470699 Yang H, Wang Y, Lai S, An H, Li Y, Chen F (2007) Application of atomic force microscopy as a nanotechnology tool in food science. J Food Sci 72(4):R65–R75. doi:10.1111/j.1750-3841.2007.00346.x Ziegler KJ, Schmidt DJ, Rauwald U, Shah KN, Flor EL, Hauge RH, Smalley RE (2005) Length-dependent extraction of single-walled carbon nanotubes. Nano Lett 5(12):2355–2359. doi:10.1021/nl0510208