Instance selection improves geometric mean accuracy: a study on imbalanced data classification

Ludmila I. Kuncheva1, Álvar Arnaiz‐González2, José-Francisco Díez-Pastor2, Iain A. D. Gunn3
1School of Computer Science, Bangor University, Dean Street, Bangor, Gwynedd, Wales, LL57 2NJ, UK
2Escuela Politécnica Superior, Universidad de Burgos, Avda. de Cantabria s/n, 09006, Burgos, Spain
3Department of Computer Science, Middlesex University, London NW4 4BT, UK

Tóm tắt

Từ khóa


Tài liệu tham khảo

Akbani, R., Kwek, S., Japkowicz, N.: Applying support vector machines to imbalanced datasets. In: Boulicaut, J.F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) Machine Learning: ECML 2004: 15th European Conference on Machine Learning, Pisa, Italy, 20-24 September, 2004. Proceedings, pp. 39–50. Springer Berlin Heidelberg, Berlin, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30115-8_7

Alcala-Fdez, J., Fernández, A., Luengo, J., Derrac, J., García, S., Sánchez, L., Herrera, F.: KEEL data-mining software tool: data set repository and integration of algorithms and experimental analysis framework. J. Mult. Valued Logic Soft Comput. 17(2–3), 255–287 (2011)

Barandela, R., Sánchez, J., García, V., Rangel, E.: Strategies for learning in class imbalance problems. Pattern Recognit. 36(3), 849–851 (2003)

Barandela, R., Valdovinos, R., Sánchez, J.: New applications of ensembles of classifiers. Pattern Anal. Appl. 6(3), 245–256 (2003)

Batista, G.E.A.P.A., Prati, R.C., Monard, M.C.: A study of the behavior of several methods for balancing machine learning training data. SIGKDD Explor. Newsl. 6(1), 20–29 (2004). https://doi.org/10.1145/1007730.1007735

Batuwita, R., Palade, V.: FSVM-CIL: fuzzy support vector machines for class imbalance learning. IEEE Trans. Fuzzy Syst. 18(3), 558–571 (2010). https://doi.org/10.1109/TFUZZ.2010.2042721

Chawla, N., Japkowicz, N., Kotcz, A.: Editorial: special issue on learning from imbalanced data sets. ACM SIGKDD Explor. Newsl. 6(1), 1–6 (2004)

Cieslak, D.A., Chawla, N.V., Striegel, A.: Combating imbalance in network intrusion datasets. In: GrC, pp. 732–737 (2006)

Cleofas-Sánchez, L., Sánchez, J.S., García, V.: Gene selection and disease prediction from gene expression data using a two-stage hetero-associative memory. Prog. Artif. Intell. (2018). https://doi.org/10.1007/s13748-018-0148-6

Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13(1), 21–27 (1967)

Dal Pozzolo, A., Caelen, O., Le Borgne, Y.A., Waterschoot, S., Bontempi, G.: Learned lessons in credit card fraud detection from a practitioner perspective. Expert Syst. Appl. 41(10), 4915–4928 (2014)

Dasarathy, B.V.: Nearest Neighbor (NN) Norms: NN Pattern Classification Techniques. IEEE Computer Society Press, Los Alamitos, California (1990)

Dietterich, T.: Approximate statistical tests for comparing supervised classification learning algorithms. Neural Comput. 10(7), 1895–1923 (1998)

Díez-Pastor, J.F., Rodríguez, J.J., García-Osorio, C., Kuncheva, L.I.: Random balance: ensembles of variable priors classifiers for imbalanced data. Knowl. Based Syst. 85, 96–111 (2015)

Díez-Pastor, J.F., Rodríguez, J.J., García-Osorio, C.I., Kuncheva, L.I.: Diversity techniques improve the performance of the best imbalance learning ensembles. Inf. Sci. 325, 98–117 (2015)

Drown, D.J., Khoshgoftaar, T.M., Seliya, N.: Evolutionary sampling and software quality modeling of high-assurance systems. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 39(5), 1097–1107 (2009)

Eskildsen, S.F., Coupé, P., Fonov, V., Collins, D.L.: Detecting alzheimer’s disease by morphological MRI using hippocampal grading and cortical thickness. In: Proceedings of the MICCAI Workshop Challenge on Computer-Aided Diagnosis of Dementia Based on Structural MRI Data, pp. 38–47 (2014)

Fernández, A., García, S., Galar, M., Prati, R., Krawczyk, B., Herrera, F.: Learning from imbalanced data sets. Springer International PU (2018). https://books.google.es/books?id=8Fp0DwAAQBAJ . Accessed 4 Feb 2019

Fix, E., Hodges, J.L.: Discriminatory analysis: non parametric discrimination: small sample performance. Technical report project 21-49-004 (11), USAF School of Aviation Medicine, Randolph Field, Texas (1952)

Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997). https://doi.org/10.1006/jcss.1997.1504

Galar, M., Fernandez, A., Barrenechea, E., Bustince, H., Herrera, F.: A review on ensembles for the class imbalance problem: Bagging-, boosting-, and hybrid-based approaches. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 42(4), 463–484 (2012)

Galar, M., Fernández, A., Barrenechea, E., Herrera, F.: Eusboost: enhancing ensembles for highly imbalanced data-sets by evolutionary undersampling. Pattern Recognit. 46(12), 3460–3471 (2013)

Garcia, S., Derrac, J., Cano, J., Herrera, F.: Prototype selection for nearest neighbor classification: taxonomy and empirical study. IEEE Trans. Pattern Anal. Mach. Intell. 34(3), 417–435 (2012). https://doi.org/10.1109/TPAMI.2011.142

García-Pedrajas, N., Pérez-Rodríguez, J., García-Pedrajas, M.D., Ortiz-Boyer, D., Fyfe, C.: Class imbalance methods for translation initiation site recognition in DNA sequences. Knowl. Based Syst. 25(1), 22–34 (2012)

García, S., Herrera, F.: Evolutionary undersampling for classification with imbalanced datasets: proposals and taxonomy. Evolut. Comput. 17(3), 275–306 (2009). https://doi.org/10.1162/evco.2009.17.3.275

Hart, P.: The condensed nearest neighbor rule (corresp.). IEEE Trans. Inf. Theory 14(3), 515–516 (1968)

Jain, A.K., Zongker, D.: Feature selection: evaluation, application, and small sample performance. IEEE Trans. Pattern Anal. Mach. Intell. 19(2), 153–158 (1997). https://doi.org/10.1109/34.574797

Krawczyk, B.: Learning from imbalanced data: open challenges and future directions. Prog. Artif. Intell. 5(4), 221–232 (2016). https://doi.org/10.1007/s13748-016-0094-0

Krawczyk, B., Galar, M., Jeleń, Ł., Herrera, F.: Evolutionary undersampling boosting for imbalanced classification of breast cancer malignancy. Appl. Soft Comput. 38, 714–726 (2016)

Kubat, M., Matwin, S.: Addressing the curse of imbalanced training sets: one-sided selection. In: Proceedings of the Fourteenth International Conference on Machine Learning, pp. 179–186. Morgan Kaufmann (1997)

Kuncheva, L.: Combining Pattern Classifiers: Methods and Algorithms. Wiley, New York (2014). https://books.google.co.uk/books?id=RtRLBAAAQBAJ . Accessed 4 Feb 2019

Laurikkala, J.: Improving identification of difficult small classes by balancing class distribution. In: Quaglini, S., Barahona, P., Andreassen, S. (eds.) Artificial Intelligence in Medicine: 8th Conference on Artificial Intelligence in Medicine in Europe, AIME 2001 Cascais, Portugal, 1–4 July, 2001, Proceedings, pp. 63–66. Springer Berlin Heidelberg, Berlin, Heidelberg (2001). https://doi.org/10.1007/3-540-48229-6_9

López, V., Triguero, I., Carmona, C.J., García, S., Herrera, F.: Addressing imbalanced classification with instance generation techniques: IPADE-ID. Neurocomputing 126, 15–28 (2014)

Phua, C., Alahakoon, D., Lee, V.: Minority report in fraud detection: classification of skewed data. ACM SIGKDD Explor. Newsl. 6(1), 50–59 (2004)

Pudil, P., Novovičová, J., Kittler, J.: Floating search methods in feature selection. Pattern Recognit. Lett. 15(11), 1119–1125 (1994). https://doi.org/10.1016/0167-8655(94)90127-9

Saeys, Y., Inza, I., naga, P.L.: A review of feature selection techniques in bioinformatics. Bioinformatics 23(19), 2507–2517 (2007)

Sáez, J.A., Krawczyk, B., Woźniak, M.: Analyzing the oversampling of different classes and types of examples in multi-class imbalanced datasets. Pattern Recognit. (2016). https://doi.org/10.1016/j.patcog.2016.03.012

Sanz, J.A., Bernardo, D., Herrera, F., Bustince, H., Hagras, H.: A compact evolutionary interval-valued fuzzy rule-based classification system for the modeling and prediction of real-world financial applications with imbalanced data. IEEE Trans. Fuzzy Syst. 23(4), 973–990 (2015)

Seiffert, C., Khoshgoftaar, T., Van Hulse, J., Napolitano, A.: RUSBoost: a hybrid approach to alleviating class imbalance. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 40(1), 185–197 (2010)

Seiffert, C., Khoshgoftaar, T.M., Van Hulse, J.: Improving software-quality predictions with data sampling and boosting. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 39(6), 1283–1294 (2009)

Sun, Z., Song, Q., Zhu, X.: Using coding-based ensemble learning to improve software defect prediction. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 42(6), 1806–1817 (2012)

Tao, T.: An Introduction to Measure Theory. Graduate Studies in Mathematics. American Mathematical Society, Providence (2013). https://books.google.es/books?id=SPGJjwEACAAJ . Accessed 4 Feb 2019

Tesfahun, A., Bhaskari, D.L.: Intrusion detection using random forests classifier with smote and feature reduction. In: 2013 International Conference on Cloud & Ubiquitous Computing & Emerging Technologies (CUBE), pp. 127–132. IEEE (2013)

Tomek, I.: Two modifications of CNN. IEEE Trans. Syst. Man Cybern. 6, 769–772 (1976)

Triguero, I., Derrac, J., García, S., Herrera, F.: A taxonomy and experimental study on prototype generation for nearest neighbor classification. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 42(1), 86–100 (2012)

Visa, S., Ralescu, A.: Issues in mining imbalanced data sets-a review paper. In: Proceedings of the Sixteen Midwest Artificial Intelligence and Cognitive Science Conference, vol. 2005, pp. 67–73 (2005)

Wilson, D.L.: Asymptotic properties of nearest neighbor rules using edited data. IEEE Trans. Syst. Man Cybern. SMC–2(3), 408–421 (1972). https://doi.org/10.1109/TSMC.1972.4309137

Wilson, D.R., Martinez, T.R.: Reduction techniques for instance-based learning algorithms. Mach. Learn. 38(3), 257–286 (2000). https://doi.org/10.1023/A:1007626913721

Witten, I.H., Frank, E., Hall, M.A.: Data Mining: Practical Machine Learning Tools and Techniques, 3rd edn. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (2011)

Wu, X., Kumar, V., Quinlan, J.R., Ghosh, J., Yang, Q., Motoda, H., McLachlan, G.J., Ng, A., Liu, B., Yu, P.S., Zhou, Z.H., Steinbach, M., Hand, D.J., Steinberg, D.: Top 10 algorithms in data mining. Knowl. Inf. Syst. 14(1), 1–37 (2008)

Yang, P., Xu, L., Zhou, B.B., Zhang, Z., Zomaya, A.Y.: A particle swarm based hybrid system for imbalanced medical data sampling. BMC Genom. 10(3), 1–14 (2009). https://doi.org/10.1186/1471-2164-10-S3-S34

Zhang, J., Mani, I.: kNN approach to unbalanced data distributions: a case study involving information extraction. In: Proceedings of The Twentieth International Conference on Machine Learning (ICML-2003), Workshop on Learning from Imbalanced Data Sets (2003)

Zheng, B., Myint, S.W., Thenkabail, P.S., Aggarwal, R.M.: A support vector machine to identify irrigated crop types using time-series landsat NDVI data. Int. J. Appl. Earth Obs. Geoinf. 34, 103–112 (2015)