Instagram photos reveal predictive markers of depression
Tóm tắt
Using Instagram data from 166 individuals, we applied machine learning tools to successfully identify markers of depression. Statistical features were computationally extracted from 43,950 participant Instagram photos, using color analysis, metadata components, and algorithmic face detection. Resulting models outperformed general practitioners’ average unassisted diagnostic success rate for depression. These results held even when the analysis was restricted to posts made before depressed individuals were first diagnosed. Human ratings of photo attributes (happy, sad, etc.) were weaker predictors of depression, and were uncorrelated with computationally-generated features. These results suggest new avenues for early screening and detection of mental illness.
Tài liệu tham khảo
Moreno M, Christakis D, Egan K, Brockman L, Becker T (2012) Associations between displayed alcohol references on Facebook and problem drinking among college students. Arch Pediatr Adolesc Med 166(2):157-163. doi:10.1001/archpediatrics.2011.180
De Choudhury M, Counts S, Horvitz E (2013) Predicting postpartum changes in emotion and behavior via social media. In: Proceedings of the SIGCHI conference on human factors in computing systems. ACM, New York, pp 3267-3276. doi:10.1145/2470654.2466447
De Choudhury M, Counts S, Horvitz EJ, Hoff A (2014) Characterizing and predicting postpartum depression from shared Facebook data. In: Proceedings of the 17th ACM conference on computer supported cooperative work & social computing, ACM, New York, pp 626-638. doi:10.1145/2531602.2531675
De Choudhury M, Gamon M, Counts S, Horvitz E (2013) Predicting depression via social media. In: Seventh international AAAI conference on weblogs and social media
Katikalapudi R, Chellappan S, Montgomery F, Wunsch D, Lutzen K (2012) Associating Internet usage with depressive behavior among college students. IEEE Technol Soc Mag 31(4):73-80. doi:10.1109/MTS.2012.2225462
Moreno MA, Jelenchick LA, Egan KG, Cox E, Young H, Gannon KE, Becker T (2011) Feeling bad on Facebook: depression disclosures by college students on a social networking site. Depress Anxiety 28(6):447-455. doi:10.1002/da.20805
Coppersmith G, Harman C, Dredze M (2014) Measuring post traumatic stress disorder in Twitter. In: Eighth international AAAI conference on weblogs and social media
De Choudhury M, Kiciman E, Dredze M, Coppersmith G, Kumar M (2016) Discovering shifts to suicidal ideation from mental health content in social media. In: Proceedings of the 2016 CHI conference on human factors in computing systems. ACM, New York, pp 2098-2110. doi:10.1145/2858036.2858207
Christakis NA, Fowler JH (2010) Social network sensors for early detection of contagious outbreaks. PLoS ONE 5(9):e12948. doi:10.1371/journal.pone.0012948
Schmidt CW (2012) Trending now: using social media to predict and track disease outbreaks. Environ Health Perspect 120(1):a30-a33. doi:10.1289/ehp.120-a30
Paparrizos J, White RW, Horvitz E (2016) Screening for pancreatic adenocarcinoma using signals from web search logs: feasibility study and results J Oncol Pract 12(8):737-744. doi:10.1200/JOP.2015.010504
Instagram (2016) Instagram press release. Available at https://www.instagram.com/press/. Accessed July 26, 2016
Chaffey D (2016) Global social media research summary 2016. Available at bit.ly/1WRviEI. Accessed July 19, 2016
Lup K, Trub L, Rosenthal L (2015) Instagram #Instasad?: exploring associations among Instagram use, depressive symptoms, negative social comparison, and strangers followed. Cyberpsychol Behav 18(5):247-252. doi:10.1089/cyber.2014.0560
Andalibi N, Ozturk P, Forte A (2015) Depression-related imagery on Instagram. In: Proceedings of the 18th ACM conference companion on computer supported cooperative work & social computing, ACM, New York, pp 231-234. doi:10.1145/2685553.2699014
Boyatzis CJ, Varghese R (1994) Children’s emotional associations with colors. J Genet Psychol 155(1):77-85
Carruthers HR, Morris J, Tarrier N, Whorwell PJ (2010) The Manchester Color Wheel: development of a novel way of identifying color choice and its validation in healthy, anxious and depressed individuals. BMC Med Res Methodol 10:12. doi:10.1186/1471-2288-10-12
Hemphill M (1996) A note on adults’ color-emotion associations. J Genet Psychol 157(3):275-280
Barrick CB, Taylor D, Correa EI (2002) Color sensitivity and mood disorders: biology or metaphor? J Affect Disord 68(1):67-71. doi:10.1016/S0165-0327(00)00358-X
American Psychiatric Association (2000) Diagnostic and statistical manual of mental disorders, 4th edn. doi:10.1176/appi.books.9780890423349
Bruce ML, Hoff RA (1994) Social and physical health risk factors for first-onset major depressive disorder in a community sample. Soc Psychiatry Psychiatr Epidemiol 29(4):165-171. doi:10.1007/BF00802013
Cornford CS, Hill A, Reilly J (2007) How patients with depressive symptoms view their condition: a qualitative study. Fam Pract 24(4):358-364. doi:10.1093/fampra/cmm032
Karp DA (1994) Living with depression: illness and identity turning points. Qual Health Res 4(1):6-30. doi:10.1177/104973239400400102
Mitchell AJ, Vaze A, Rao S (2009) Clinical diagnosis of depression in primary care: a meta-analysis. Lancet 374(9690):609-619. doi:10.1016/S0140-6736(09)60879-5
Epstein RM, Duberstein PR, Feldman MD, Rochlen AB, Bell RA, Kravitz RL et al. (2010) ‘I didn’t know what was wrong:’ how people with undiagnosed depression recognize, name and explain their distress. J Gen Intern Med 25(9):954-961. doi:10.1007/s11606-010-1367-0
Radloff LS (1977) The CES-D scale: a self-report depression scale for research in the general population. Appl Psych Manage 1(3):385-401. doi:10.1177/014662167700100306
Fountoulakis KN, Bech P, Panagiotidis P, Siamouli M, Kantartzis S, Papadopoulou A et al. (2007) Comparison of depressive indices: reliability, validity, relationship to anxiety and personality and the role of age and life events. J Affect Disord 97(1-3):187-195. doi:10.1016/j.jad.2006.06.015
Zich JM, Attkisson CC, Greenfield TK (1990) Screening for depression in primary care clinics: the CES-D and the BDI. Int J Psychiatry Med 20(3):259-277. doi:10.2190/LYKR-7VHP-YJEM-MKM2
Peer E, Vosgerau J, Acquisti A (2013) Reputation as a sufficient condition for data quality on Amazon Mechanical Turk. Behav Res Methods 46(4):1023-1031. doi:10.3758/s13428-013-0434-y
Litman L, Robinson J, Rosenzweig C (2014) The relationship between motivation, monetary compensation, and data quality among US- and India-based workers on Mechanical Turk. Behav Res Methods 47(2):519-528. doi:10.3758/s13428-014-0483-x
Cuijpers P, Boluijt B, van Straten A (2007) Screening of depression in adolescents through the Internet. Eur Child Adolesc Psychiatry 17(1):32-38. doi:10.1007/s00787-007-0631-2
Haringsma R, Engels GI, Beekman ATF, Spinhoven P (2004) The criterion validity of the center for epidemiological studies depression scale (CES-D) in a sample of self-referred elders with depressive symptomatology. Int J Geriatr Psychiatry 19(6):558-563. doi:10.1002/gps.1130
Dodds PS, Harris KD, Kloumann IM, Bliss CA, Danforth CM (2011) Temporal patterns of happiness and information in a global social network: hedonometrics and Twitter. PLoS ONE 6(12):e26752. doi:10.1371/journal.pone.0026752
Reece AG, Reagan AJ, Lix KLM, Dodds PS, Danforth CM, Langer EJ (2016) Forecasting the onset and course of mental illness with Twitter data. arXiv:1608.07740
Detels R (2009) The scope and concerns of public health. Oxford University Press, London
Fiske ST, Hauser RM (2014) Protecting human research participants in the age of big data. Proc Natl Acad Sci USA 111(38):13675-13676. doi:10.1073/pnas.1414626111
Lumb D (2016) Scientists release personal data for 70,000 OkCupid profiles. Available at engt.co/2b4NnQ0. Accessed August 7, 2016
Lazer D, Kennedy R, King G, Vespignani A (2014) The parable of Google flu: traps in big data analysis. Science 343(6176):1203-1205. doi:10.1126/science.1248506
Gigerenzer G (2004) Mindless statistics. J Socio-Econ 33(5):587-606. doi:10.1016/j.socec.2004.09.03
Hubbard R, Lindsay RM (2008) Why p-values are not a useful measure of evidence in statistical significance testing. Theory Psychol 18(1):69-88. doi:10.1177/0959354307086923
Morey RD, Hoekstra R, Rouder JN, Lee MD, Wagenmakers EJ (2015) The fallacy of placing confidence in confidence intervals. Psychon Bull Rev 23(1):103-123. doi:10.3758/s13423-015-0947-8
Wasserstein RL, Lazar NA (2016) The ASA’s statement on p-values: context, process, and purpose. Am Stat 70(2):129-133. doi:10.1080/00031305.2016.1154108
Martin A, Quinn K, Park JH (2011) MCMCpack: Markov chain Monte Carlo in R. J Stat Softw 42(9):1-21
Link WA, Eaton MJ (2012) On thinning of chains in MCMC. Methods Ecol Evol 3(1):112-115. doi:10.1111/j.2041-210X.2011.00131.x
Christensen R, Johnson W, Branscum A, Hanson TE (2011) Bayesian ideas and data analysis: an introduction for scientists and statisticians. CRC Press, Boca Raton
Jeffries H (1961) Theory of probability. Clarendon, Oxford
Geweke J (1992) Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments. Vol. 196. Federal Reserve Bank of Minneapolis, Research Department, Minneapolis
Gelman A, Rubin DB (1992) Inference from iterative simulation using multiple sequences. Stat Sci 7(4):457-472
Gelman A, Carlin JB, Stern HS, Rubin DB (2014) Bayesian data analysis (Vol. 2). CRC Press, Boca Raton