Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Sự không ổn định của dòng chảy cưỡng bức trong một bể hình trụ xoay với một đĩa quay khác biệt trên bề mặt tự do
Tóm tắt
Sự không ổn định của dòng chảy cưỡng bức trong một bể hình trụ xoay với một đĩa quay khác biệt trên bề mặt tự do được điều tra thông qua một loạt các mô phỏng số ba chiều không ổn định. Kết quả cho thấy trạng thái dòng chảy cơ bản của hệ thống này có tính đối xứng trục và ổn định, nhưng có nhiều cấu trúc phong phú tại mặt phẳng kinh tuyến. Tuy nhiên, khi số Reynolds của xoay vượt qua một giá trị giới hạn, dòng chảy sẽ trải qua một giai đoạn chuyển tiếp sang dòng chảy dao động ba chiều, được đặc trưng bởi các sóng dao động vận tốc di chuyển theo hướng phương vị. Các đặc điểm chính của các mẫu dòng chảy được trình bày, bao gồm hướng lan truyền, vận tốc, biên độ và số sóng, phụ thuộc vào tốc độ và hướng quay của đĩa và bể hình trụ, đồng thời các điều kiện giới hạn cho sự khởi đầu của dòng chảy dao động cũng được xác định. Đối với trường hợp chỉ có đĩa quay, sự không ổn định ly tâm là nguyên nhân chịu trách nhiệm cho sự chuyển tiếp dòng chảy, và khi đĩa quay cùng chiều hoặc ngược chiều với bể hình trụ, các cơ chế cho sự chuyển tiếp lần lượt là sự không ổn định hình ellip và không ổn định cắt tròn.
Từ khóa
#dòng chảy cưỡng bức #bể hình trụ #mô phỏng số #sự không ổn định #số Reynolds #dao động ba chiềuTài liệu tham khảo
Zandbergen P J, Dijkstra D. Von Kármán swirling flows. Annu Rev Fluid Mech, 1987, 19: 465–491
Spohn A, Mory M, Hopfinger E J. Observations of vortex breakdown in an open cylindrical container with a rotating bottom. Exp Fluids, 1983, 14(8): 70–77
Spohn A, Mory M, Hopfinger E J. Experiments on vortex breakdown in a confined flow generated by a rotating disc. J Fluid Mech, 1998, 370: 73–99
Stevens J L, Lopez J M, Cantwell B J. Oscillatory flow states in an enclosed cylinder with a rotating endwall. J Fluid Mech, 1999, 389: 101–118
Escudier M P. Observations of the flow produced in a cylindrical container by a rotating endwall. Exp Fluids, 1984, 2: 189–196
Lugt H J, Abboud M. Axisymmetrical vortex breakdown with and without temperature effects in a container with a rotating lid. J Fluid Mech, 1987, 179: 179–200
Lopez J M. Axisymmetric vortex breakdown Part 1. Confined swirling flow. J Fluid Mech, 1990, 221: 533–552
Gelfgat A Y, BarYoseph P Z, Solan A. Stability of confined swirling flow with and without vortex breakdown. J Fluid Mech, 1996, 311: 1–36
Lopez J M, Marques F, Sanchez J. Oscillatory modes in an enclosed swirling flow. J Fluid Mech, 2001, 439: 109–129
Lilly D K. On the instability of Ekman boundary layer flow. J Atmos Sci, 1966, 23: 17–33
Schouveiler L, Le Gal P, Chauve M P. Stability of a traveling roll system in a rotating disk flow. Phys Fluids, 1998, 10(11): 2695–2697
Schouveiler L, Le Gal P, Chauve M P. Instabilities of the flow between a rotating and a stationary disk. J Fluid Mech, 2001, 443: 329–350
Savas Ö. Circular waves on a stationary disk in rotating flow. Phys Fluids, 1983, 26(12): 3445–3448
Lopez J M. Flow between a stationary and a rotating disk shrouded by a co-rotating cylinder. Phys Fluids, 1996, 8(10): 2605–2613
Gauthier G, Gondret P, Rabaud M. Axisymmetric propagating vortices in the flow between a stationary and a rotating disk enclosed by a cylinder. J Fluid Mech, 1999, 386: 105–126
Serre E, del Arco E C, Bontoux P. Annular and spiral patterns in flows between rotating and stationary discs. J Fluid Mech, 2001, 434: 65–100
Schouveiler L, Le Gal P, Chauve M P, et al. Spiral and circular waves in the flow between a rotating and a stationary disk. Exp Fluids, 1999, 26(3): 179–187
Gauthier G, Gondret P, Moisy F, et al. Instabilities in the flow between co- and counter-rotating disks. J Fluid Mech, 2002, 473: 1–21
Fein J S, Pfeffer R L. An experimental study of the effects of Prandtl number on thermal convection in a rotating, differentially heated cylindrical annulus of fluid. J Fluid Mech, 1976, 75: 81–112
Seidl A, McCord G, Muller G, et al. Experimental-observation and numerical-simulation of wave patterns in a Czochralski silicon melt. J Cryst Growth, 1994, 137(3–4): 326–334
Nakamura S, Eguchi M, Azami T, et al., Thermal waves of a nonaxisymmetric flow in a Czochralski-type silicon melt. J Cryst Growth, 1999, 207(1–2): 55–61
Lee Y S, Chun C H. Prandtl number effect on traveling thermal waves occurring in Czochralski crystal growth. Adv Space Res, 1999, 24(10): 1403–1407
Hintz P, Schwabe D. Convection in a Czochralski crucible, Part 2: Non-rotating crystal. J Cryst Growth, 2001, 222(1–2): 356–364
Teitel M, Schwabe D, Gelfgat A Y. Experimental and computational study of the instabilities in a model of Czochralski growth. J Cryst Growth, 2008, 310(7–9): 1343–1348
Son S S, Yi K W. Experimental study on the effect of crystal and crucible rotations on the thermal and velocity field in a low Prandtl number melt in a large crucible. J Cryst Growth, 2005, 275(1–2): e249–e257
Son S S, Nam P O, Yi K W. The effect of crystal rotation direction on the thermal and velocity fields of a Czochralski system with a low Prandtl number melt. J Cryst Growth, 2006, 292(2): 272–281
Chen Z B, Jiang X, Zhou Z, et al. Progress in application of CFD techniques. Sci China Ser E-Tech Sci, 2008, 51(7):827–841
Rojo J C, Derby J J. On the formation of rotational spoke patterns during the Czochralski growth of bismuth silicon oxide. J Cryst Growth, 1999, 198: 154–160
Gelfgat A Y. Three-dimensional stability calculations for hydrodynamic model of Czochralski growth. J Cryst Growth, 2007, 303(1): 226–230
Liu L J, Kakimoto K. Effects of crystal rotation rate on the melt-crystal interface of a CZ-Si crystal growth in a transverse magnetic field. J Cryst Growth, 2008, 310(2): 306–312
Nam P O, Sang-Kun O, Yi K W. 3-D time-dependent numerical model of flow patterns within a large-scale Czochralski system. J Cryst Growth, 2008, 310(7–9): 2126–2133
Zeng Z, Chen J Q, Mizuseki H, et al. Three-dimensional oscillatory convection of LiCaAlF6 melts in Czochralski crystal growth. J Cryst Growth, 2003, 252(4): 538–549
Li Y R, Peng L, Wu S Y, et al. Effect of crystal rotation on thermocapillary flow in a shallow molten silicon pool. Microgravity Sci Tec, 2007, 19(3–4):163–164
Chen S X, Li M W. Flow instability of buoyant-Marangoni convection in the LEC GaAs melt. Sci China Ser E-Tech Sci, 2008, 51(4): 397–406
Gunzburger M, Ozugurlu E, Turner J, et al. Controlling transport phenomena in the Czochralski crystal growth process. J Cryst Growth, 2002, 234(1): 47–62
Jing C J, Tsukada T, Hozawa M, et al. Numerical studies of wave pattern in an oxide melt in the Czochralski crystal growth. J Cryst Growth, 2004, 265(3–4): 505–517
Jing C J, Imaishi N, Sato T, et al. Three-dimensional numerical simulation of oxide melt flow in Czochralski configuration. J Cryst Growth, 2000, 216(1–4): 372–388
Kumar V, Basu B, Enger S, et al. Role of Marangoni convection in Si-Czochralski melts — Part II: 3D predictions with crystal rotation. J Cryst Growth, 2003, 255(1–2): 27–39
Enger S, Basu B, Breuer M, et al. Numerical study of three-dimensional mixed convection due to buoyancy and centrifugal force in an oxide melt for Czochralski growth. J Cryst Growth, 2000, 219(1–2): 144–164
Basu B, Enger S, Breuer M, et al. Effect of crystal rotation on the three-dimensional mixed convection in the oxide melt for Czochralski growth. J Cryst Growth, 2001, 230(1–2): 148–154
Shi W Y, Ermakov M K, Imaishi N. Effect of pool rotation on thermocapillary convection in shallow annular pool of silicone oil. J Cryst Growth, 2006, 294: 474–485
Li Y R, Xiao L, Wu S Y, et al. Effect of pool rotation on flow pattern transition of silicon melt thermocapillary flow in a slowly rotating shallow annular pool. Int J Heat Mass Transfer, 2008, 51(7–8): 1810–1817
Hu W R, Tang Z M, Li K, Numerical study on onset of oscillatory thermocapillary flow in rectangular liquid pool. Sci China Tech Sci, 2010, 53(4): 1069–1076
Duan L, Kang Q, Hu W R. Characters of surface deformation and surface wave in thermal capillary convection. Sci China Ser E-Tech Sci, 2006, 49(5): 601–610
Duan L, Kang Q. Study on buoyancy phenomenon in the crystal growth process. Sci China Ser E-Tech Sci, 2009, 52(8): 2367–2372
Kanda I. A laboratory study of two-dimensional and three-dimensional instabilities in a quasi-two-dimensional flow driven by differential rotation of a cylindrical tank and a disc on the free surface. Phys Fluids, 2004, 16(9): 3325–3340
Li Y R, Wu C M, Wu S Y, et al. Three-dimensional flow driven by iso- and counter-rotation of a shallow pool and a disk on the free surface. Phys Fluids, 2009, 21(8): 084102
Patankar S V. Numerical Heat Transfer and Fluid Flow. New York: McGraw-Hill, 1980
Van der Vorst H A, BI-CGSTAB. A fast and smoothly converging variant of BI-CG for the solution of nonsymmetric linear-systems. Siam J Sci Stat Comput, 1992, 13(2): 631–644
Crochet M J, Wouters P J, Geyling F T, et al. Finite-element simulation of Czochralski bulk flow. J Cryst Growth, 1983, 65(1–3): 153–165
Fontaine J P, Randriamampianina A, Bontoux P. Numerical simulation of flow structures and instabilities occurring in a liquid-encapsulated Czochralski process. Phys Fluids A, 1991, 3(10): 2310–2331
Brandle C D. Simulation of fluid flow in Gd3Ga5O12 melts. J Cryst Growth, 1977, 42: 400–404
Vizman D, Grabner O, Muller G. Three-dimensional numerical simulation of thermal convection in an industrial Czochralski melt: comparison to experimental results. J Cryst Growth, 2001, 233(4): 687–698
Klaassen G P, Peltier W R. The onset of turbulence in finite-amplitude Kelvin-Helmholtz billows. J Fluid Mech, 1985, 155: 1–35
Rayleigh L. On the dynamics of revolving fluids. Proc R Soc Lond, 1917, 93: 148–154
Lopez J M, Hart J E, Marques F, et al. Instability and mode interactions in a differentially driven rotating cylinder. J Fluid Mech, 2002, 462: 383–409
Bayly B J. Three-dimensional instability of elliptic flow. Phys Rev Lett, 1986, 57(17): 2160–2163
Landman M J, Saffman P G. The three-dimensional instability of strained vortices in a viscous fluid. Phys Fluids, 1987, 30(8): 2339–2342
Kerswell R R. Elliptical instability. Ann Rev Fluid Mech, 2002, 34: 83–113