Instability mitigation by integrating twin Tesla type valves in supercritical carbon dioxide based natural circulation loop

Applied Thermal Engineering - Tập 182 - Trang 116087 - 2021
Tabish Wahidi1, Ajay Kumar Yadav1
1Advanced Heat Transfer Laboratory, Department of Mechanical Engineering, National Institute of Technology Karnataka, Surathkal, Mangalore, 575025, India

Tài liệu tham khảo

Yamaguchi, 2010, Preliminary study on a solar water heater using supercritical carbon dioxide as working fluid, J. Sol. Energy Eng., 132, 0110101, 10.1115/1.4000350 Kreitlow, 1978, Thermosyphon models for downhole heat exchanger applications in shallow geothermal systems, J. Heat Transf., 100, 713, 10.1115/1.3450883 Greif, 1988, Natural circulation loops, J. Heat Transf., 110, 1243, 10.1115/1.3250624 Chauhan, 2019, Characterization of a dual taper thermosiphon loop for CPU cooling in data centers, Appl. Therm. Eng., 146, 450, 10.1016/j.applthermaleng.2018.10.010 Samba, 2013, Two-phase thermosyphon loop for cooling outdoor telecommunication equipments, Appl. Therm. Eng., 50, 1351, 10.1016/j.applthermaleng.2012.05.023 Dimmick, 2002, Natural-convection studies for advanced CANDU reactor concepts, Nucl. Eng. Des., 215, 27, 10.1016/S0029-5493(02)00039-0 Chatoorgoon, 2005, The stability boundary for supercritical flow in natural-convection loops: Part II: CO2 and H2, Nucl. Eng. Des., 235, 2581, 10.1016/j.nucengdes.2005.06.004 Kondoh, 2004, Deposition of Cu and Ru thin films in deep nanotrenches/holes using supercritical carbon dioxide, Jpn. J. Appl. Phys., 43, 3928, 10.1143/JJAP.43.3928 Blackburn, 2001, Deposition of conformal copper and nickel films from supercritical carbon dioxide, Science, 294, 141, 10.1126/science.1064148 Dostal, 2006, The supercritical carbon dioxide power cycle: comparison to other advanced power cycles, Nucl. Technol., 154, 283, 10.13182/NT06-A3734 Bondioli, 1992, Lampante olive oil refining with supercritical carbon dioxide, J. Am. Oil Chem. Soc., 69, 477, 10.1007/BF02540953 Kumar, 2009, Steady-state analysis of CO2 based natural circulation loops with end heat exchangers, Appl. Therm. Eng., 29, 1893, 10.1016/j.applthermaleng.2008.08.002 Yamaguchi, 2008, Basic study on new cryogenic refrigeration using CO2 solid-gas two phase flow, Int. J. Refrig., 31, 404, 10.1016/j.ijrefrig.2007.08.001 Neksa, 1998, CO2 heat pump water heater: characteristics, system design and experimental results, Int. J. Refrig., 21, 172, 10.1016/S0140-7007(98)00017-6 Yadav, 2012, CFD Analysis of a CO2 based natural circulation loop with end heat exchangers, Appl. Therm. Eng., 36, 288, 10.1016/j.applthermaleng.2011.10.031 Liu, 2016, Heat transfer of supercritical carbon dioxide flowing in a rectangular circulation loop, Appl. Therm. Eng., 98, 39, 10.1016/j.applthermaleng.2015.11.110 Chen, 2011, Simulation of heat transfer and system behavior in a supercritical CO2 based thermosyphon: effect of pipe diameter, J. Heat Transf., 133, 122505, 10.1115/1.4004434 Sadhu, 2018, Experimental studies on an air-cooled natural circulation loop based on supercritical carbon dioxide-Part B: Transient operation, Appl. Therm. Eng., 133, 819, 10.1016/j.applthermaleng.2017.10.016 Zhang, 2010, Natural convective flow and heat transfer of supercritical CO2 in a rectangular circulation loop, Int. J. Heat Mass Transf., 53, 4112, 10.1016/j.ijheatmasstransfer.2010.05.031 Yadav, 2014, Transient analysis of subcritical/supercritical carbon dioxide based natural circulation loops with end heat exchangers: numerical studies, Int. J. Heat Mass Transf., 79, 24, 10.1016/j.ijheatmasstransfer.2014.07.068 Yadav, 2017, Transient analysis of subcritical/supercritical carbon dioxide based natural circulation loop with end heat exchangers: experimental study, Heat Mass Transf., 53, 2951, 10.1007/s00231-017-2038-z Thippeswamy, 2020, Heat transfer enhancement using CO2 in a natural circulation loop, Sci. Rep., 1 Archana, 2015, Effect of pressure on steady state and heat transfer characteristics in supercritical CO2 natural circulation loop, Procedia Eng., 127, 636, 10.1016/j.proeng.2015.11.459 Keller, 1966, Periodic oscillations in a model of thermal convection, J. Fluid Mech., 26, 599, 10.1017/S0022112066001423 Welander, 1967, On the oscillatory instability of a differentially heated fluid loop, J. Fluid Mech., 29, 17, 10.1017/S0022112067000606 Zvirin, 1982, A review of natural circulation loops in pressurized water reactors and other systems, Nucl. Eng. Des., 67, 203, 10.1016/0029-5493(82)90142-X Nayak, 1995, Mathematical modelling of the stability characteristics of a natural circulation loop, Math. Comput. Model., 22, 77, 10.1016/0895-7177(95)00169-3 Mousavian, 2004, Transient and stability analysis in single-phase natural circulation, Ann. Nucl. Energy, 31, 1177, 10.1016/j.anucene.2004.01.005 Luzzi, 2017, Assessment of analytical and numerical models on experimental data for the study of single-phase natural circulation dynamics in a vertical loop, Chem. Eng. Sci., 162, 262, 10.1016/j.ces.2016.12.058 Cammi, 2017, Stability analysis by means of information entropy: assessment of a novel method against natural circulation experimental data, Chem. Eng. Sci., 166, 220, 10.1016/j.ces.2017.03.036 Vijayan, 2002, Experimental observations on the general trends of the steady state and stability behaviour of single-phase natural circulation loops, Nucl. Eng. Des., 215, 139, 10.1016/S0029-5493(02)00047-X Devia, 2012, Analysis of the effects of heat sink temperature on single-phase natural circulation loops behaviour, Int. J. Therm. Sci., 59, 195, 10.1016/j.ijthermalsci.2012.03.006 Marchitto, 2018, Experiments on parallel connected loops in single phase natural circulation: preliminary results, Math. Model. Eng. Prob., 5, 161 Jain, 2006, A linear stability analysis for natural-circulation loops under supercritical conditions, Nucl. Technol., 155, 312, 10.13182/NT06-A3764 L. Chen, X.R. Zhang, H. Yamaguchi, Z.S. Liu, Effect of heat transfer on the instabilities and transitions of supercritical CO2 flow in a natural circulation loop, Int. J. Heat Mass Transf. 53 (2010) 4101–4111, https://doi.org/10.1016/j.ijheatmasstransfer.2010.05.030. Deng, 2019, The flow transition characteristics of supercritical CO2 based closed natural circulation loop (NCL) system, Ann. Nucl. Eng., 132, 134, 10.1016/j.anucene.2019.04.032 Rao, 2005, Dynamic performance of a natural circulation loop with end heat exchangers under different excitations, Int. J. Heat Mass Transf., 48, 3185, 10.1016/j.ijheatmasstransfer.2005.02.022 Misale, 2016, Experimental study on the influence of power steps on the thermohydraulic behavior of a natural circulation loop, Int. J. Heat Mass Transf., 99, 782, 10.1016/j.ijheatmasstransfer.2016.04.036 Chen, 1985, On the oscillatory instability of closed-loop thermosyphons, J. Heat Transf., 107, 826, 10.1115/1.3247510 Zvirin, 1981, Experimental and analytical investigation of a natural circulation system with parallel loops, J. Heat Transf., 103, 645, 10.1115/1.3244521 Misale, 2000 Wang, Yuzhou, Jonathan Singer, Haim H. Bau, Controling chaos in a thermal convection loop. J. Fluid Mech. 237 (1992) 479–498, doi: 10.1017/S0022112092003501. Nayak, 2008, An experimental investigation of single-phase natural circulation behavior in a rectangular loop with Al2O3 nanofluids, Exp. Therm. Fluid Sci., 184, 10.1016/j.expthermflusci.2008.07.017 Nayak, 2011, Study on the transient and stability behaviour of a boiling two-phase natural circulation loop with Al2O3 nanofluids, Appl. Therm. Eng., 31, 1673, 10.1016/j.applthermaleng.2011.02.009 Misale, 2012, Experiments with Al2O3 nanofluid in a single-phase natural circulation mini-loop: preliminary results, Appl. Therm. Eng., 40, 64, 10.1016/j.applthermaleng.2012.01.053 Liu, 2017, Experimental research and theoretical analysis of flow instability in supercritical carbon dioxide natural circulation loop, Appl. Energy, 205, 813, 10.1016/j.apenergy.2017.08.132 Chen, 2014, Effects of heater orientations on the natural circulation and heat transfer in a supercritical CO2 rectangular loop, J. Heat Transf., 136, 052501, 10.1115/1.4025543 Krishnani, 2017, Annals of nuclear energy computational stability appraisal of rectangular natural circulation loop: effect of loop inclination, Ann. Nucl. Eng., 107, 17, 10.1016/j.anucene.2017.04.012 Yadav A.K. , Ramgopal M., Bhattacharyya S., Effect of tilt angle on subcritical/supercritical carbon dioxide based natural circulation loop with isothermal source and sink, J. Therm. Sci. Eng. Appl. 8 (1) (2016) 011007, doi: 10.1115/1.4030702. N. Tesla, Valvular Conduit, U.S. Patent No. 1,329,559, 1920. Truong, 2013, Simulation and optimization of Tesla valves, Nanotechology, 1, 178 Gamboa, 2005, Improvements in fixed-valve micropump performance through shape optimization of valves, J. Fluids Eng., 127, 339, 10.1115/1.1891151 Forster, 1995, Design, fabrication and testing of fixed-valve micro-pumps, Proc. ASME Fluids Eng. Div., 234, 39 S. Zhang, S.H. Winoto, H.T. Low, Performance simulations of Tesla microfluidic valves, in: Proceedings of the International Conference on Integration and Commercialization of Micro and Nanosystems, Sanya, Hainan, China, Paper No. MNC2007-21107 A, 42657, 2007, pp. 15–19, doi: 10.1115/MNC2007-21107. Nobakht, 2013, Numerical study of diodicitybmechanism in different Tesla-type microvalves, J. Appl. Res. Technol., 11, 876, 10.1016/S1665-6423(13)71594-3 Thompson, 2011, Investigation of a flat-plate oscillating heat pipe with Tesla-type check valves, Exp. Therm. Fluid Sci., 35, 1265, 10.1016/j.expthermflusci.2011.04.014 De Vries, 2017, Design and operation of a Tesla-type valve for pulsating heat pipes, Int. J. Heat Mass Transf., 105, 1, 10.1016/j.ijheatmasstransfer.2016.09.062 Vijayan, 2008, Effect of loop diameter on the steady state and stability behaviour of single-phase and two-phase natural circulation loops, Sci. Technol. Nucl. Install., 1, 10.1155/2008/672704 Lisboa, 2010, Computational-fluid-dynamics study of a Kenics static mixer as a heat exchanger for supercritical carbon dioxide, J. Supercrit. Fluids, 55, 107, 10.1016/j.supflu.2010.08.005 Yadav, 2012, CO2 based natural circulation loops: new correlations for friction and heat transfer, Int. J. Heat Mass Transf., 55, 4621, 10.1016/j.ijheatmasstransfer.2012.04.019 Swapnalee, 2012, Steady state flow and static instability of supercritical natural circulation loops, Nucl. Eng. Des., 245, 99, 10.1016/j.nucengdes.2012.01.002 Sharma, 2013, Steady state and stability characteristics of natural circulation loops operating with carbon dioxide at supercritical pressures for open and closed loop boundary conditions, Nucl. Eng. Des., 265, 737, 10.1016/j.nucengdes.2013.07.023 Archana, 2015, Numerical modeling of supercritical CO2 natural circulation loop, Nucl. Eng. Des., 293, 330, 10.1016/j.nucengdes.2015.07.030 Cao, 2012, Flow and heat transfer characteristics of supercritical CO2 in a natural circulation loop, Int. J. Therm. Sci., 58, 52, 10.1016/j.ijthermalsci.2012.02.023 NIST, Standard Reference Database-REFPROP, Version 9. 1, National Institute of Standards and Technology, Gaithersburg, MD, 2013. Roache, 1986, Editorial policy statement on the control of numerical accuracy, J. Fluids Eng., 108, 1, 10.1115/1.3242537 Roache, 1994, Perspective: a method for uniform reporting of grid refinement studies, J. Fluids Eng., 116, 405, 10.1115/1.2910291 Yoshikawa, 2005, Performance of a natural convection circulation system for supercritical fluids, J. Supercrit. Fluids, 36, 70, 10.1016/j.supflu.2005.02.007 Cammarata, 2004, On the effect of gravity on the bifurcation of rectangular closed-loop thermosyphon, Heat Mass Transf., 40, 801, 10.1007/s00231-003-0480-6 Chatoorgoon, 2001, Stability of supercritical fluid flow in a single-channel natural-convection loop, Int. J. Heat Mass Transf., 44, 1963, 10.1016/S0017-9310(00)00218-0 Pegallapati, 2020, Dynamic model of supercritical CO2 based natural circulation loops with fixed charge, Appl. Therm. Eng., 114906, 10.1016/j.applthermaleng.2020.114906 Vijayan, 1995, Simulation of the unstable oscillatory behavior of single-phase natural circulation with repetitive flow reversals in a rectangular loop using the computer code ATHLET, Nucl. Eng. Des., 155, 623, 10.1016/0029-5493(94)00972-2 Duffey, 2005, Experimental heat transfer of supercritical carbon dioxide flowing inside channels (survey), Nucl. Eng. Des., 235, 913, 10.1016/j.nucengdes.2004.11.011 Muscato, 2003, Modeling and control of a natural circulation loop, J. Process Control., 13, 239, 10.1016/S0959-1524(02)00029-X Saha, 2018, Dynamic characterization of a single phase square natural circulation loop, Appl Therm. Eng., 128, 1126, 10.1016/j.applthermaleng.2017.09.092