Sự Không Ổn Định và Sự Hội Tụ Dưới Quy Tắc Đơn Đa Số: Kết Quả Từ Mô Phỏng Lựa Chọn Ủy Ban Trong Không Gian Hai Chiều
Tóm tắt
Từ khóa
#sự hội tụ #quy tắc đơn đa số #mô phỏng #lựa chọn tập thể #lý thuyết trò chơiTài liệu tham khảo
Bartholdi, J.J., Narasimhan, L.S. and Tovey, C.A. (1991), Recognizing majority rule equilibriumin spatial voting games. Social Choice and Welfare 7: 183-197.
Davis, O.A., DeGroot, M. H. and Hinich, M. J. (1972), Social preference orderings and majority rule. Econometrica 40: 147-157.
Feld, S. L., Grofman, B. and Miller, N. R. (1988), Centripetal forces in spatial voting: on the size of the yolk. Public Choice 59: 37-50.
Feld, S.L., Grofman, B. and Miller, N.R. (1989), Limits on agenda control in spatial voting games. Mathematical Modeling 12: 405-416.
Ferejohn, J.A., Fiorina, M. P. and Packel, E.W. (1980), Nonequilibrium solutions for legislative systems. Behavioral Science 25: 140-148.
Ferejohn, J.A., McKelvey, R.D. and Packel, E.W. (1984), Limiting distributions for continuous state markov voting models. Social Choice and Welfare 1: 45-67.
Koehler, D.H. (1990), The size of the yolk: Computations for odd and even numbered committees. Social Choice and Welfare 7: 231-245.
Koehler, D.H. (1992), Limiting median lines frequently determine the yolk: A rejoinder. Social Choice and Welfare 9: 37-41.
Koehler, D.H. (1996), Committee choice and the core under supramajority rule: Results from simulation of majority choice in 2-dimensional space. Public Choice 87: 281-301.
McKelvey, R.D. (1976), Intransitivities in multidimensional voting models and some implications for agenda control. Journal of Economic Theory 12: 472-482.
McKelvey, R.D. (1986), Covering, dominance, and institution free properties of social choice. American Journal of Political Science 30: 283-314.
Miller, N.R. (1980), A new solution set for tournaments and majority voting. American Journal of Political Science 24: 68-96.
Packel, E.W. (1981), A stochastic solution concept for n-person games. The Mathematics of Operations Research 6: 349-362.
Shepsle, K.A. and Weingast B.R. (1984), Uncovered sets and sophisticated voting outcomes with implications for agenda institutions. American Journal of Political Science 28: 49-74.
Stone, R.E. and Tovey, C.A. (1992), Limiting median lines do not suffice to determine the yolk. Social Choice and Welfare 9: 33-35.
Tovey, C.A. (1991), A polynomial-time algorithm for computing the yolk in fixed dimension. Mathematical Programming 57: 259-277.
Weisberg, H.F. (1992), Central tendency and variability. Newbury Park, CA: Sage.
Wilson, R.K. (1986), Forward and backward agenda procedures: Committee experiments on structurally induced equilibrium. Journal of Politics 48: 390-409.