Inspiration from Natural Silks and Their Proteins
Tài liệu tham khảo
Addadi, 2006, Mollusk shell formation: A source of new concepts for understanding biomineralization processes, Chem. Eur. J., 12, 981, 10.1002/chem.200500980
Ajikumar, 2004, Controlled deposition of thin films of calcium carbonate on natural and synthetic templates, Crystal Growth Des., 4, 331, 10.1021/cg034128e
Altman, 2002, Silk matrix for tissue engineered anterior cruciate ligaments, Biomaterials, 23, 4131, 10.1016/S0142-9612(02)00156-4
Altman, 2003, Silk-based biomaterials, Biomaterials, 24, 401, 10.1016/S0142-9612(02)00353-8
Aoki, 2003, Culture of chondrocytes in fibroin-hydrogel sponge, Bio. Med. Mater. Eng., 13, 309
Arai, 2004, Biodegradation of Bombyx mori silk fibroin fibers and films, J. Appl. Polym. Sci., 91, 2383, 10.1002/app.13393
Asakura, 2002, The role of irregular unit, GAAS, on the secondary structure of Bombyx mori silk fibroin studied with C-13 CP/MAS NMR and wide-angle X-ray scattering, Protein Sci., 11, 1873, 10.1110/ps.0208502
Asakura, 2004, Structural role of tyrosine in Bombyx mori silk fibroin, studied by solid-state NMR and molecular mechanics on a model peptide prepared as silk I and II, Magn. Reson. Chem., 42, 258, 10.1002/mrc.1337
Asakura, 2002, C-13 CP/MAS NMR study on structural heterogeneity in Bombyx mori silk fiber and their generation by stretching, Protein Sci., 11, 2706, 10.1110/ps.0221702
Ayutsede, 2005, Regeneration of Bombyx mori silk by electrospinning. Part 3: Characterization of electrospun nonwoven mat, Polymer, 46, 1625, 10.1016/j.polymer.2004.11.029
Ayutsede, 2006, Carbon nanotube reinforced Bombyx mori silk nanofibers by the electrospinning process, Biomacromolecules, 7, 208, 10.1021/bm0505888
Baeuerlein, 2000
Bauerlein, 2003, Biomineralization of unicellular organisms: an unusual membrane biochemistry for the production of inorganic nano- and microstructures, Angew. Chem. Int. Ed., 42, 614, 10.1002/anie.200390176
Becker, 2003, Molecular nanosprings in spider capture-silk threads, Nat. Mater., 2, 278, 10.1038/nmat858
van Beek, 2002, The molecular structure of spider dragline silk: Folding and orientation of the protein backbone, Proc. Natl. Acad. Sci. U.S.A., 99, 10266, 10.1073/pnas.152162299
van Beek, 1999, Supercontracted spider dragline silk: a solid-state NMR study of the local structure, Int. J. Biol. Macromol., 24, 173, 10.1016/S0141-8130(98)00083-X
Belcher, 1996, Control of crystal phase switching and orientation by soluble mollusc-shell proteins, Nature, 381, 56, 10.1038/381056a0
Bognitzki, 2001, Nanostructured fibers via electrospinning, Adv. Mater., 13, 70, 10.1002/1521-4095(200101)13:1<70::AID-ADMA70>3.0.CO;2-H
Boland, 2006, Electrospinning of bioresorbable polymers for tissue engineering scaffolds, Vol. 918
Butler, 2006, Calcium carbonate crystallization in the presence of biopolymers, Crystal Growth Des., 6, 781, 10.1021/cg050436w
Cao, 2007, Oriented nucleation of hydroxylapatite crystals on spider dragline silks, Langmuir, 23, 10701, 10.1021/la7014435
Cao, H. “Preparation of Silk Fibroin-based Electrospun Mat and Deposition of Inorganic Mineral on Silk Fibroin Matrix” Ph.D dissertation, Fudan University, 2008
Cao, 2007, The preparation of regenerated silk fibroin microspheres, Soft Matter, 3, 910, 10.1039/b703139d
Chen, 2006, Preparation of non-woven mats from all-aqueous silk fibroin solution with electrospinning method, Polymer, 47, 6322, 10.1016/j.polymer.2006.07.009
Chen, 2003, Human bone marrow stromal cell and ligament fibroblast responses on RGD-modified silk fibers, J. Biomed. Mater. Res. Part A, 67A, 559, 10.1002/jbm.a.10120
Chen, 2002, Conformation transition in silk protein films monitored by time-resolved Fourier transform infrared spectroscopy: Effect of potassium ions on Nephila spidroin films, Biochemistry, 41, 14944, 10.1021/bi026550m
Chen, 2002, Rheological characterization of Nephila spidroin solution, Biomacromolecules, 3, 644, 10.1021/bm0156126
Chen, 2002, Conformation transition of silk protein membranes monitored by time-resolved FTIR spectroscopy: Effect of alkali metal ions on Nephila spidroin membrane, Acta Chimica Sinica, 60, 2203
Chen, 2006, The spinning processes for spider silk, Soft Matter, 2, 448, 10.1039/b601286h
Chen, 2004, Regenerated silk protein solutions having high concentrations and preparation methods, Chinese patent
Cheng, 2008, Silk fibroin regulating the crystallization process of calcium carbonate, Adv. Funct. Mater, 18, 2172, 10.1002/adfm.200701130
Colfen, 2003, Precipitation of carbonates: Recent progress in controlled production of complex shapes, Curr. Opin. Colloid Interface Sci., 8, 23, 10.1016/S1359-0294(03)00012-8
Colfen, 2001, Double-hydrophilic block copolymers: Synthesis and application as novel surfactants and crystal growth modifiers, Macromol. Rapid Commun., 22, 219, 10.1002/1521-3927(20010201)22:4<219::AID-MARC219>3.0.CO;2-G
Corsini, 2007, Influence of the draw ratio on the tensile and fracture behavior of NMMO regenerated silk fibers, J. Polym. Sci. B Polym. Phys., 45, 2568, 10.1002/polb.21255
Dal Pra, 2005, De novo engineering of reticular connective tissue in vivo by silk fibroin nonwoven materials, Biomaterials, 26, 1987, 10.1016/j.biomaterials.2004.06.036
Dicko, 2004, Transition to a beta-sheet-rich structure in spidroin in vitro: The effects of pH and cations, Biochemistry, 43, 14080, 10.1021/bi0483413
Dicko, 2004, Spider silk protein refolding is controlled by changing pH, Biomacromolecules, 5, 704, 10.1021/bm034307c
Drummy, 2005, Thermally induced alpha-helix to beta-sheet transition in regenerated silk fibers and films, Biomacromolecules, 6, 3328, 10.1021/bm0503524
Eles, 2004, Strain dependent local phase transitions observed during controlled supercontraction reveal mechanisms in spider silk, Macromolecules, 37, 1342, 10.1021/ma035567p
Emile, 2006, Biopolymers: Shape memory in spider draglines, Nature, 440, 621, 10.1038/440621a
Engelberg, 1991, Physicomechanical properties of degradable polymers used in medical applications – a comparative-study, Biomaterials, 12, 292, 10.1016/0142-9612(91)90037-B
The ExPASy (Expert Protein Analysis System, http://www.expasy.ch/) proteomics server of the Swiss Institute of Bioinformatics, P05790.
Fahnestock, 2003, Vol. 8
Falini, 1996, Control of aragonite or calcite polymorphism by mollusk shell macromolecules, Science, 271, 67, 10.1126/science.271.5245.67
Feng, 2000, Polymorph and morphology of calcium carbonate crystals induced by proteins extracted from mollusk shell, J. Crystal Growth, 216, 459, 10.1016/S0022-0248(00)00396-1
Fini, 2005, The healing of confined critical size cancellous defects in the presence of silk fibroin hydrogel, Biomaterials, 26, 3527, 10.1016/j.biomaterials.2004.09.040
Foo, 2006, Novel nanocomposites from spider silk-silica fusion (chimeric) proteins, Proc. Natl. Acad. Sci. U.S.A., 103, 9428, 10.1073/pnas.0601096103
Freddi, 1999, Structure and physical properties of silk fibroin polyacrylamide blend films, J. Appl. Polym. Sci., 71, 1563, 10.1002/(SICI)1097-4628(19990307)71:10<1563::AID-APP4>3.0.CO;2-E
Frische, 1998, Elongate cavities and skin-core structure in Nephila spider silk observed by electron microscopy, J. Microsc. Oxford, 189, 64, 10.1046/j.1365-2818.1998.00285.x
Fuchs, 2006, Outgrowth endothelial cells isolated and expanded from human peripheral blood progenitor cells for endothelialization as a potential source of autologous of silk fibroin biomaterials, Biomaterials, 27, 5399, 10.1016/j.biomaterials.2006.06.015
Ge, 2006, Biomaterials and scaffolds for ligament tissue engineering, J. Biomed. Mater. Res. A, 77A, 639, 10.1002/jbm.a.30578
Gosline, 1986, The Structure and Properties of Spider Silk, Endeavour, 10, 37, 10.1016/0160-9327(86)90049-9
Gosline, 1999, The mechanical design of spider silks: from fibroin sequence to mechanical function, J. Exp. Biol., 202, 3295, 10.1242/jeb.202.23.3295
Grubb, 1997, Fiber morphology of spider silk: the effects of tensile deformation, Macromolecules, 30, 2860, 10.1021/ma961293c
Guinea, 2003, Self-tightening of spider silk fibers induced by moisture, Polymer, 44, 5785, 10.1016/S0032-3861(03)00625-6
Gotoh, 1998, Effect of the chemical modification of the arginyl residue in Bombyx mori silk fibroin on the attachment and growth of fibroblast cells, J. Biomed. Mater. Res., 39, 351, 10.1002/(SICI)1097-4636(19980305)39:3<351::AID-JBM2>3.0.CO;2-I
Gupta, 2007, Patterned silk films cast from ionic liquid solubilized fibroin as scaffolds for cell growth, Langmuir, 23, 1315, 10.1021/la062047p
Ha, 2003, Dissolution of Bombyx mori silk fibroin in the calcium nitrate tetrahydrate-methanol system and aspects of wet spinning of fibroin solution, Biomacromolecules, 4, 488, 10.1021/bm0255948
Ha, 2005, Structural studies of Bombyx mori silk fibroin during regeneration from solutions and wet fiber spinning, Biomacromolecules, 6, 1722, 10.1021/bm050010y
Hakimi, 2007, Spider and mulberry silkworm silks as compatible biomaterials, Compos. B Eng., 38, 324, 10.1016/j.compositesb.2006.06.012
Hardikar, 2001, Influence of ionic and nonionic dextrans on the formation of calcium hydroxide and calcium carbonate particles, Colloids Surf. A, 186, 23, 10.1016/S0927-7757(01)00479-4
Hayashi, 1998, Evidence from flagelliform silk cDNA for the structural basis of elasticity and modular nature of spider silks, J. Mol. Biol., 275, 773, 10.1006/jmbi.1997.1478
Hayashi, 1999, Hypotheses that correlate the sequence, structure, and mechanical properties of spider silk proteins, Int. J. Biol. Macromol., 24, 271, 10.1016/S0141-8130(98)00089-0
Heslot, 1998, Artificial fibrous proteins: A review, Biochimie, 80, 19, 10.1016/S0300-9084(98)80053-9
Hinman, 2000, Synthetic spider silk: A modular fiber, Trends Biotechnol., 18, 374, 10.1016/S0167-7799(00)01481-5
Hinman, 1992, Isolation of a Clone Encoding a 2nd Dragline Silk Fibroin – Nephila-Clavipes Dragline Silk Is a 2-Protein Fiber, J. Biol. Chem., 267, 19320, 10.1016/S0021-9258(18)41777-2
Hosoda, 2003, Template effect of crystalline poly(vinyl alcohol) for selective formation of aragonite and vaterite CaCO3 thin films, Macromolecules, 36, 6449, 10.1021/ma025869b
Hossain, 2003, Dynamic light scattering of native silk fibroin solution extracted from different parts of the middle division of the silk gland of the Bombyx mori silkworm, Biomacromolecules, 4, 350, 10.1021/bm020109u
Hu, 2006, Biocompatible fibroin blended films with recombinant human-like collagen for hepatic tissue engineering, J. Bioact. Compat. Polym., 21, 23, 10.1177/0883911506060455
Hu, 2006, Molecular mechanisms of spider silk, Cell. Mol. Life Sci., 63, 1986, 10.1007/s00018-006-6090-y
Huang, 2007, Investigation on the biodegradation behavior of Bombyx mori silk and porous regenerated fibroin scaffold, Acta Chimica Sinica, 65, 2592
Huemmerich, 2004, Primary structure elements of spider dragline silks and their contribution to protein solubility, Biochemistry, 43, 13604, 10.1021/bi048983q
Inoue, 2000, Silk fibroin of Bombyx mori is secreted, assembling a high molecular mass elementary unit consisting of H-chain, L-chain, and P25, with a 6:6:1 molar ratio, J. Biol. Chem., 275, 40517, 10.1074/jbc.M006897200
Jeong, 2006, Time-resolved structural investigation of regenerated silk fibroin nanofibers treated with solvent vapor, Int. J. Biol. Macromol., 38, 140, 10.1016/j.ijbiomac.2006.02.009
Jiang, 2007, Mechanical properties of robust ultrathin silk fibroin films, Adv. Funct. Mater., 17, 2229, 10.1002/adfm.200601136
Jin, 2004, Human bone marrow stromal cell responses on electrospun silk fibroin mats, Biomaterials, 25, 1039, 10.1016/S0142-9612(03)00609-4
Jin, 2002, Electrospinning Bombyx mori silk with poly(ethylene oxide), Biomacromolecules, 3, 1233, 10.1021/bm025581u
Jin, 2003, Mechanism of silk processing in insects and spiders, Nature, 424, 1057, 10.1038/nature01809
Jin, 2004, Biomaterial films of Bombyx mori silk fibroin with poly(ethylene oxide), Biomacromolecules, 5, 711, 10.1021/bm0343287
Karageorgiou, 2004, Bone morphogenetic protein-2 decorated silk fibroin films induce osteogenic differentiation of human bone marrow stromal cells, J. Biomed. Mater. Res. A, 71A, 528, 10.1002/jbm.a.30186
Karageorgiou, 2006, Porous silk fibroin 3-D scaffolds for delivery of bone morphogenetic protein-2 in vitro and in vivo, J. Biomed. Mater. Res. A, 78A, 324, 10.1002/jbm.a.30728
Kardestuncer, 2006, RGD-tethered silk substrate stimulates the differentiation of human tendon cells, Clin. Orthopaedics Relat. Res., 448, 234, 10.1097/01.blo.0000205879.50834.fe
Kato, 2002, Calcium carbonate-organic hybrid materials, Adv. Mater., 14, 869, 10.1002/1521-4095(20020618)14:12<869::AID-ADMA869>3.0.CO;2-E
Ki, 2007, Electrospun three-dimensional silk fibroin nanofibrous scaffold, J. Appl. Polym. Sci., 106, 3922, 10.1002/app.26914
Ki, 2007, The effect of residual silk sericin on the structure and mechanical property of regenerated silk filament, Int. J. Biol. Macromol., 41, 346, 10.1016/j.ijbiomac.2007.05.005
Ki, 2007, Dissolution and wet spinning of silk fibroin using phosphoric acid/formic acid mixture solvent system, J. Appl. Polym. Sci., 105, 1605, 10.1002/app.26176
Kim, 2005, Influence of macroporous protein scaffolds on bone tissue engineering from bone marrow stem cells, Biomaterials, 26, 4442, 10.1016/j.biomaterials.2004.11.013
Kim, 2005, Biological efficacy of silk fibroin nanofiber membranes for guided bone regeneration, J. Biotechnol., 120, 327, 10.1016/j.jbiotec.2005.06.033
Kim, 2003, Silk fibroin nanofiber: electrospinning, properties, and structure, Polym. J., 35, 185, 10.1295/polymj.35.185
Kim, 2005, Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroin, Biomaterials, 26, 2775, 10.1016/j.biomaterials.2004.07.044
Kino, 2006, Deposition of bone-like apatite on modified silk fibroin films from simulated body fluid, J. Appl. Polym. Sci., 99, 2822, 10.1002/app.22910
Kirker-Head, 2007, BMP-silk composite matrices heal critically sized femoral defects, Bone, 41, 247, 10.1016/j.bone.2007.04.186
Knight, 2000, Beta transition and stress-induced phase separation in the spinning of spider dragline silk, Int. J. Biol. Macromol., 27, 205, 10.1016/S0141-8130(00)00124-0
Knight, 1999, Liquid crystals and flow elongation in a spider's silk production line, Proc. R. Soc. London Ser. B Biol. Sci., 266, 519, 10.1098/rspb.1999.0667
Knight, 2001, Changes in element composition along the spinning duct in a Nephila spider, Naturwissenschaften, 88, 179, 10.1007/s001140100220
Kong, 2004, Silk fibroin regulated mineralization of hydroxyapatite nanocrystals, J. Cryst. Growth, 270, 197, 10.1016/j.jcrysgro.2004.06.007
Kummerlen, 1996, Local structure in spider dragline silk investigated by two-dimensional spin-diffusion nuclear magnetic resonance, Macromolecules, 29, 2920, 10.1021/ma951098i
Kweon, 2001, Physical properties of silk fibroin/chitosan blend films, J. Appl. Polym. Sci., 80, 928, 10.1002/app.1172
Lazaris, 2002, Spider silk fibers spun from soluble recombinant silk produced in mammalian cells, Science, 295, 472, 10.1126/science.1065780
Lee, 1998, Effect of surface properties on the antithrombogenicity of silk fibroin/S-carboxymethyl kerateine blend films, J. Biomater. Sci. Polym. Ed., 9, 905, 10.1163/156856298X00235
Leveque, 2004, Promotion of fluorapatite crystallization by soluble-matrix proteins from Lingula anatina shells, Angew. Chem. Int. Ed., 43, 885, 10.1002/anie.200353115
Levi-Kalisman, 2001, Structure of the nacreous organic matrix of a bivalve mollusk shell examined in the hydrated state using Cryo-TEM, J. Struct. Biol., 135, 8, 10.1006/jsbi.2001.4372
Lewis, 2006, Spider silk: Ancient ideas for new biomaterials, Chem. Rev., 106, 3762, 10.1021/cr010194g
Li, C.M. “Silk polymer templates in biomineralization”, Ph.D. Thesis, Tufts University (2005).
Li, 2005, Silk apatite composites from electrospun fibers, J. Mater. Res., 20, 3374, 10.1557/jmr.2005.0425
Li, 2002, Selective in vitro effect of peptides on calcium carbonate crystallization, Cryst. Growth Des., 2, 387, 10.1021/cg0255467
Li, 2006, Electrospun silk-BMP-2 scaffolds for bone tissue engineering, Biomaterials, 27, 3115, 10.1016/j.biomaterials.2006.01.022
Li, 2003, Compliant film of regenerated Antheraea pernyi silk fibroin by chemical crosslinking, Int. J. Biol. Macromol., 32, 159, 10.1016/S0141-8130(03)00049-7
Lin, 2007, Preliminary exploration of the artificial preparation, structures and properties of regenerated silk fibers, Chem. J. Chin. Univ. Chin., 28, 1181
Liu, 2005, Extended wet-spinning can modify spider silk properties, Chem. Commun., 19, 2489, 10.1039/b500319a
Liu, 2005, Relationships between supercontraction and mechanical properties of spider silk, Nat. Mater., 4, 901, 10.1038/nmat1534
Liu, 2008, Elasticity of Spider Silks, Biomacromolecules, 9, 1782, 10.1021/bm7014174
Liu, 2008, Proline and processing of spider silks, Biomacromolecules, 9, 116, 10.1021/bm700877g
Litvin, 1997, Template-directed synthesis of aragonite under supramolecular hydrogen-bonded Langmuir monolayers, Adv. Mater., 9, 124, 10.1002/adma.19970090205
Lock, R.L.“Process for Making Silk Fibroin Fibers”. US 5171505 [P] (1992).
Lv, 2005, Preparation of insoluble fibroin films without methanol treatment, J. Appl. Polym. Sci., 96, 2168, 10.1002/app.21682
Lv, 2005, Clotting times and tensile properties of insoluble silk fibroin films containing heparin, Polym. Int., 54, 1076, 10.1002/pi.1814
Madsen, 1999, Variability in the mechanical properties of spider silks on three levels: Interspecific, intraspecific and intraindividual, Int. J. Biol. Macromol., 24, 301, 10.1016/S0141-8130(98)00094-4
Mann, 2001
Marolt, 2006, Bone and cartilage tissue constructs grown using human bone marrow stromal cells, silk scaffolds and rotating bioreactors, Biomaterials, 27, 6138, 10.1016/j.biomaterials.2006.07.015
Marsano, 2005, Wet spinning of Bombyx mori silk fibroin dissolved in N-methyl morpholine N-oxide and properties of regenerated fibres, Int. J. Biol. Macromol., 37, 179, 10.1016/j.ijbiomac.2005.10.005
Marsh, 1955, An investigation of the structure of silk fibroin, Biochim. Biophys. Acta, 16, 1, 10.1016/0006-3002(55)90178-5
Matsumoto, 1996, Studies on regenerated protein fibers 3. Production of regenerated silk fibroin fiber by the self-dialyzing wet spinning method, J. Appl. Polym. Sci., 60, 503, 10.1002/(SICI)1097-4628(19960425)60:4<503::AID-APP3>3.0.CO;2-S
Meechaisue, 2007, Preparation of electrospun silk fibroin fiber mats as bone scaffolds: A preliminary study, Biomed. Mater., 2, 181, 10.1088/1748-6041/2/3/003
Meinel, 2004, Engineering cartilage-like tissue using human mesenchymal stem cells and silk protein scaffolds, Biotechnol. Bioeng., 88, 379, 10.1002/bit.20252
Meinel, 2006, Silk based biomaterials to heal critical sized femur defects, Bone, 39, 922, 10.1016/j.bone.2006.04.019
Meinel, 2005, Silk implants for the healing of critical size bone defects, Bone, 37, 688, 10.1016/j.bone.2005.06.010
Meinel, 2006, Osteogenesis by human mesenchymal stem cells cultured on silk biomaterials: Comparison of adenovirus mediated gene transfer and protein delivery of BMP-2, Biomaterials, 27, 4993, 10.1016/j.biomaterials.2006.05.021
Meinel, 2004, Bone tissue engineering using human mesenchymal stem cells: Effects of scaffold material and medium flow, Ann. Biomed. Eng., 32, 112, 10.1023/B:ABME.0000007796.48329.b4
Meinel, 2004, Engineering bone-like tissue in vitro using human bone marrow stem cells and silk scaffolds, J. Biomed. Mater. Res. A, 71A, 25, 10.1002/jbm.a.30117
Miller, 1999, Investigation of the nanofibrillar morphology in silk fibers by small angle X-ray scattering and atomic force microscopy, Int. J. Biol. Macromol., 24, 159, 10.1016/S0141-8130(99)00024-0
Min, 2006, Regenerated silk fibroin nanofibers: Water vapor-induced structural changes and their effects on the behavior of normal human cells, Macromol. Biosci., 6, 285, 10.1002/mabi.200500246
Min, 2004, Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro, Biomaterials, 25, 1289, 10.1016/j.biomaterials.2003.08.045
Minoura, 1990, Physicochemical properties of silk fibroin membrane as a biomaterial, Biomaterials, 11, 430, 10.1016/0142-9612(90)90100-5
Mita, 1994, Highly repetitive structure and its organization of the silk fibroin gene, J. Mol. Evol., 38, 583, 10.1007/BF00175878
Mo, 2006, Near-infrared characterization on the secondary structure of regenerated Bombyx mori silk fibroin, Appl. Spectrosc., 60, 1438, 10.1366/000370206779321355
Moreau, 2005, Sequential growth factor application in bone marrow stromal cell ligament engineering, Tissue Eng., 11, 1887, 10.1089/ten.2005.11.1887
Motriuk-Smith, 2005, Analysis of the conserved N-terminal domains in major ampullate spider silk proteins, Biomacromolecules, 6, 3152, 10.1021/bm050472b
Motta, 2002, Regenerated silk fibroin films: Thermal and dynamic mechanical analysis, Macromol. Chem. Phys., 203, 1658, 10.1002/1521-3935(200207)203:10/11<1658::AID-MACP1658>3.0.CO;2-3
Motta, 2004, Fibroin hydrogels for biomedical applications: Preparation, characterization and in vitro cell culture studies, J. Biomat. Sci. Polym. Ed., 15, 851, 10.1163/1568562041271075
Nudelman, 2006, Mollusk shell formation: Mapping the distribution of organic matrix components underlying a single aragonitic tablet in nacre, J. Struct. Biol., 153, 176, 10.1016/j.jsb.2005.09.009
O'Brien, 1998, Nylons from nature: Synthetic analogs to spider silk, Advan. Mater., 10, 1185, 10.1002/(SICI)1521-4095(199810)10:15<1185::AID-ADMA1185>3.0.CO;2-T
Ohgo, 2003, Preparation of non-woven nanofibers of Bombyx mori silk, Samia cynthia ricini silk and recombinant hybrid silk with electrospinning method, Polymer, 44, 841, 10.1016/S0032-3861(02)00819-4
Oroudjev, 2002, Segmented nanofibers of spider dragline silk: atomic force microscopy and single-molecule force spectroscopy, Proc. Natl. Acad. Sci. U.S.A., 99, 6460, 10.1073/pnas.082526499
Park, 2004, Effect of chitosan on morphology and conformation of electrospun silk fibroin nanofibers, Polymer, 45, 7151, 10.1016/j.polymer.2004.08.045
Park, 2006, Biomimetic nanofibrous scaffolds: Preparation and characterization of chitin/silk fibroin blend nanofibers, Int. J. Biol. Macromol., 38, 165, 10.1016/j.ijbiomac.2006.03.003
Park, 2002, Synthesis of single crystals of calcite with complex morphologies, Adv. Mater., 14, 1167, 10.1002/1521-4095(20020816)14:16<1167::AID-ADMA1167>3.0.CO;2-X
Peng, 2005, Further investigation on potassium-induced conformation transition of Nephila spidroin film with two-dimensional infrared correlation spectroscopy, Biomacromolecules, 6, 302, 10.1021/bm049598j
Phillips, 2004, Dissolution and regeneration of Bombyx mori Silk fibroin using ionic liquids, J. Am. Chem. Soc., 126, 14350, 10.1021/ja046079f
Phillips, 2005, Regenerated silk fiber wet spinning from an ionic liquid solution, J. Mater. Chem., 15, 4206, 10.1039/b510069k
Phillips, 2006, Silk regeneration with ionic liquids’. Abstracts of Papers of the American Chemical Society, 231
Pins, 1997, Self-assembly of collagen fibers. Influence of fibrillar alignment and decorin on mechanical properties, Biophys. J., 73, 2164, 10.1016/S0006-3495(97)78247-X
Porter, 2005, Predicting the mechanical properties of spider silk as a model nanostructured polymer, Eur. Phys. J. E, 16, 199, 10.1140/epje/e2005-00021-2
Poza, 2002, Fractographic analysis of silkworm and spider silk, Eng. Fract. Mech., 69, 1035, 10.1016/S0013-7944(01)00120-5
Putthanarat, 2004, Nonlinear optical transmission of silk/green fluorescent protein (GFP) films, Polymer, 45, 8451, 10.1016/j.polymer.2004.10.014
Rathore, 2001, Self-assembly of beta-sheets into nanostructures by poly(alanine) segments incorporated in multiblock copolymers inspired by spider silk, J. Am. Chem. Soc., 123, 5231, 10.1021/ja004030d
Raz, 2000, Formation of high-magnesian calcites via an amorphous precursor phase: Possible biological implications, Advan. Mater., 12, 38, 10.1002/(SICI)1521-4095(200001)12:1<38::AID-ADMA38>3.0.CO;2-I
Riekel, 1999, In situ X-ray diffraction during forced silking of spider silk, Macromolecules, 32, 4464, 10.1021/ma990067a
Riekel, 2001, Spider silk fibre extrusion: Combined wide- and small-angle X-ray microdiffraction experiments, Int. J. Biol. Macromol., 29, 203, 10.1016/S0141-8130(01)00166-0
Sapede, 2005, Nanofibrillar structure and molecular mobility in spider dragline silk, Macromolecules, 38, 8447, 10.1021/ma0507995
Savage, 2004, Supercontraction stress in spider webs, Biomacromolecules, 5, 675, 10.1021/bm034270w
Sehnal, 2004, Construction of silk fiber core in Lepidoptera, Biomacromolecules, 5, 666, 10.1021/bm0344046
Seidel, 2000, Regenerated spider silk: Processing, properties, and structure, Macromolecules, 33, 775, 10.1021/ma990893j
Seidel, 1998, Artificial spinning of spider silk, Macromolecules, 31, 6733, 10.1021/ma9808880
Shimura, 1976, Studies on silk fibroin of Bombyx-Mori. 1. Fractionation of fibroin prepared from posterior silk gland, J. Biochem., 80, 693, 10.1093/oxfordjournals.jbchem.a131328
Sponner, 2005, Characterization of the protein components of Nephila clavipes dragline silk, Biochemistry, 44, 4727, 10.1021/bi047671k
Sponner, 2005, Differential polymerization of the two main protein components of dragline silk during fibre spinning, Nat. Mat., 4, 772, 10.1038/nmat1493
Shao, 1999, Heterogeneous morphology of Nephila edulis spider silk and its significance for mechanical properties, Polymer, 40, 4709, 10.1016/S0032-3861(99)00072-5
Shao, 1999, Analysis of spider silk in native and supercontracted states using Raman spectroscopy, Polymer, 40, 2493, 10.1016/S0032-3861(98)00475-3
Shao, 1999, The effect of solvents on the contraction and mechanical properties of spider silk, Polymer, 40, 1799, 10.1016/S0032-3861(98)00266-3
Shao, 2002, Materials: Surprising strength of silkworm silk., Nature, 418, 741, 10.1038/418741a
Shao, 2003, Structure and behavior of regenerated spider silk, Macromolecules, 36, 1157, 10.1021/ma0214660
Shao, 1999, The effect of solvents on spider silk studied by mechanical testing and single-fibre Raman spectroscopy, Int. J. Biol. Macromol., 24, 295, 10.1016/S0141-8130(98)00093-2
Shen, 1998, Microstructural characterization of Bombyx mori silk fibers, Macromolecules, 31, 8857, 10.1021/ma980281j
Shulha, 2006, Unfolding the multi-length scale domain structure of silk fibroin protein, Polymer, 47, 5821, 10.1016/j.polymer.2006.06.002
Shen, 2002, The modulation of collagen on crystal morphology of calcium carbonate, J. Cryst. Growth, 242, 239, 10.1016/S0022-0248(02)01376-3
Slocik, 2007, Biological assembly of hybrid inorganic nanomaterials, Curr. Nanosci., 3, 117, 10.2174/157341307780619242
Sofia, 2001, Functionalized silk-based biomaterials for bone formation, J. Biomed. Mater. Res., 54, 139, 10.1002/1097-4636(200101)54:1<139::AID-JBM17>3.0.CO;2-7
Sugihara, 2000, Promotive effects of a silk film on epidermal recovery from full-thickness skin wounds, Proc. Soc. Exp. Biol. Med., 225, 58, 10.1046/j.1525-1373.2000.22507.x
Sukigara, 2003, Regeneration of Bombyx mori silk by electrospinning – part 1: Processing parameters and geometric properties, Polymer, 44, 5721, 10.1016/S0032-3861(03)00532-9
Sukigara, 2004, Regeneration of Bombyx mori silk by electrospinning. Part 2. Process optimization and empirical modeling using response surface methodology, Polymer, 45, 3701, 10.1016/j.polymer.2004.03.059
Sudo, 1997, Structures of mollusc shell framework proteins, Nature, 387, 563, 10.1038/42391
Sumper, 2006, Learning from diatoms: Nature's tools for the production of nanostructured silica, Adv. Funct. Mater., 16, 17, 10.1002/adfm.200500616
Sugawara, 2003, Chiral biomineralization: Mirror-imaged helical growth of calcite with chiral phosphoserine copolypeptides, Macromol. Rapid Commun., 24, 847, 10.1002/marc.200350030
Takeuchi, 2003, Deposition of bone-like apatite on silk fiber in a solution that mimics extracellular fluid, J. Biomed. Mater. Res. A, 65A, 283, 10.1002/jbm.a.10456
Takeuchi, 2005, Heterogeneous nucleation of hydroxyapatite on protein: Structural effect of silk sericin, J. R. Soc. Interface, 2, 373, 10.1098/rsif.2005.0052
Tanaka, 1999, Hydrophobic interaction of P25, containing Asn-linked oligosaccharide chains, with the H-L complex of silk fibroin produced by Bombyx mori, Insect Biochem. Mol. Biol., 29, 269, 10.1016/S0965-1748(98)00135-0
Tanaka, 2007, Nano-scaled hydroxyapatite/silk fibroin sheets support osteogenic differentiation of rat bone marrow mesenchymal cells, Mater. Sci. Eng. C Biomimetic Supramol. Sys., 27, 817, 10.1016/j.msec.2006.09.019
Terada, 2005, Preparation of silk protein sericin as mitogenic factor for better mammalian cell culture, J. Biosci. Bioeng., 100, 667, 10.1263/jbb.100.667
Termonia, 1994, Molecular modeling of spider silk elasticity, Macromolecules, 27, 7378, 10.1021/ma00103a018
Tsubouchi, 2005, Sericin enhances attachment of cultured human skin fibroblasts, Biosci. Biotechnol. Biochem., 69, 403, 10.1271/bbb.69.403
Um, 2004, Wet spinning of silk polymer – II. Effect of drawing on the structural characteristics and properties of filament, Int. J. Biol. Macromol., 34, 107, 10.1016/j.ijbiomac.2004.03.011
Um, 2004, Wet spinning of silk polymer – I. Effect of coagulation conditions on the morphological feature of filament, Int. J. Biol. Macromol., 34, 89, 10.1016/j.ijbiomac.2004.03.007
Unger, 2004, Endothelialization of a non-woven silk fibroin net for use in tissue engineering: Growth and gene regulation of hunian endothelial cells, Biomaterials, 25, 5137, 10.1016/j.biomaterials.2003.12.040
Urry, 1975, Studies on Conformation and Interactions of Elastin – Nuclear Magnetic-Resonance of Polyhexapeptide, Int. J. Pept. Protein Res., 7, 367, 10.1111/j.1399-3011.1975.tb02455.x
Vepari, 2007, Silk as a biomaterial, Prog. Polym. Sci., 32, 991, 10.1016/j.progpolymsci.2007.05.013
Vepari, 2006, Covalently immobilized enzyme gradients within three-dimensional porous scaffolds, Biotechnol. Bioeng., 93, 1130, 10.1002/bit.20833
Vollrath, 2006, Spider silk as archetypal protein elastomer, Soft Matter, 2, 377, 10.1039/b600098n
Vollrath, 2001, The effect of spinning conditions on the mechanics of a spider's dragline silk, Proc. R. Soc. London Ser. B Biol. Sci., 268, 2339, 10.1098/rspb.2001.1590
Verraest, 1996, Carboxymethyl inulin: A new inhibitor for calcium carbonate precipitation, J. Am. Oil Chem. Soc., 73, 55, 10.1007/BF02523448
Vollrath, 1999, Structure and function of the silk production pathway in the Spider Nephila edulis, Int. J. Biol. Macromol., 24, 243, 10.1016/S0141-8130(98)00095-6
Vollrath, 2001, Liquid crystalline spinning of spider silk, Nature, 410, 541, 10.1038/35069000
Wang, 2006, Cartilage tissue engineering with silk scaffolds and human articular chondrocytes, Biomaterials, 27, 4434, 10.1016/j.biomaterials.2006.03.050
Wang, 2006, Structure of silk fibroin fibers made by an electrospinning process from a silk fibroin aqueous solution, J. Appl. Polym. Sci., 101, 961, 10.1002/app.24024
Wang, 2005, Electrospun ultra-fine silk fibroin fibers from aqueous solutions, J. Mater. Sci., 40, 5359, 10.1007/s10853-005-4332-2
Wang, 2007, High-affinity integration of hydroxyapatite nanoparticles with chemically modified silk fibroin, J. Nanoparticle Res., 9, 919, 10.1007/s11051-006-9167-5
Wang, 2004, Mechanical properties of electrospun silk fibers, Macromolecules, 37, 6856, 10.1021/ma048988v
Wang, 2006, Production of submicron diameter silk fibers under benign processing conditions by two-fluid electrospinning, Macromolecules, 39, 1102, 10.1021/ma0517749
Wang, 2006, Calcite mesocrystals: ‘Morphing’ crystals by a polyelectrolyte, Chem. Eur. J., 12, 5722, 10.1002/chem.200501019
Wang, 2005, Nonclassical crystallization: Mesocrystals and morphology change of CaCO3 crystals in the presence of a polyelectrolyte additive, J. Am. Chem. Soc., 127, 3246, 10.1021/ja045331g
Wang, 2007, Silk coatings on PLGA and alginate microspheres for protein delivery, Biomaterials, 28, 4161, 10.1016/j.biomaterials.2007.05.036
Wang, 2007, Silk microspheres for encapsulation and controlled release, J. Controlled Release, 117, 360, 10.1016/j.jconrel.2006.11.021
Wei, 2007, Artificial nacre by alternating preparation of layer-by-layer polymer films and CaCO3 strata, Chem. Mater., 19, 1974, 10.1021/cm062898i
Weiner, 1980, X-ray-diffraction study of the insoluble organic matrix of Mollusk shells, FEBS Lett., 111, 311, 10.1016/0014-5793(80)80817-9
Work, 1977, Dimensions, birefringences, and force-elongation behavior of major and minor ampullate silk fibers from Orb-Web-Spinning Spiders – Effects of wetting on these properties, Text. Res. J., 47, 650, 10.1177/004051757704701003
Xu, 1990, Structure of a protein superfiber – spider dragline silk, Proc. Natl. Acad. Sci. U.S.A., 87, 7120, 10.1073/pnas.87.18.7120
Xu, 2007, Biomimetic mineralization, J. Mater. Chem., 17, 415, 10.1039/B611918M
Yamada, 2001, Preparation of undegraded native molecular fibroin solution from silkworm cocoons, Mat. Sci. Eng. C Biomimetic Supramol. Sys., 14, 41, 10.1016/S0928-4931(01)00207-7
Yang, 2005, Toughness of spider silk at high and low temperatures, Adv. Mater., 17, 84, 10.1002/adma.200400344
Yao, 2002, Artificial spinning and characterization of silk fiber from Bombyx mori silk fibroin in hexafluoroacetone hydrate, Macromolecules, 35, 6, 10.1021/ma011335j
Yao, 2007, Effect of initial Bombyx mori silk fibroin structure on the protein biomineralization, Acta Chimica Sinica, 65, 635
Yeo, 2000, The effects of PVA/Chitosan/Fibroin (PCF)-blended spongy sheets on wound healing in rats, Biol. Pharm. Bull., 23, 1220, 10.1248/bpb.23.1220
Yu, 2004, Bio-inspired crystal morphogenesis by hydrophilic polymers, J. Mater. Chem., 14, 2124, 10.1039/B401420K
Zarkoob, 2004, Structure and morphology of electrospun silk nanofibers, Polymer, 45, 3973, 10.1016/j.polymer.2003.10.102
Zarkoob, 1998, Structure and morphology of nano electrospun silk fibers. Abstracts of Papers of the American Chemical Society, 216
Zhang, 2002, Applications of natural silk protein sericin in biomaterials, Biotechnol. Adv., 20, 91, 10.1016/S0734-9750(02)00003-4
Zhang, 2007, Formation of silk fibroin nanoparticles in water-miscible organic solvent and their characterization, J. Nanopart. Res., 9, 885, 10.1007/s11051-006-9162-x
Zhao, 2003, Structural characterization and artificial fiber formation of Bombyx mori silk fibroin in hexafluoro-iso-propanol solvent system, Biopolymers, 69, 253, 10.1002/bip.10350
Zhaorigetu, 2001, Supplemental silk protein, sericin, suppresses colon tumorigenesis in 1,2-dimethylhydrazine-treated mice by reducing oxidative stress and cell proliferation, Biosci. Biotechnol. Biochem., 65, 2181, 10.1271/bbb.65.2181
Zhou, 2000, Fine organization of Bombyx mori fibroin heavy chain gene, Nucleic Acids Res., 28, 2413, 10.1093/nar/28.12.2413
Zhou, 2001, Silk fibroin: Structural implications of a remarkable amino acid sequence, Proteins Struc Funct. Genet., 44, 119, 10.1002/prot.1078
Zhou, 2006, The artificial spinning based on silk proteins, Prog. Chem., 18, 933
Zhou, 2006, X-ray photoelectron spectroscopic and Raman analysis of silk fibroin-Cu(II) films, Biopolymers, 82, 144, 10.1002/bip.20472
Zhou, 2005, Effect of metallic ions on silk formation the mulberry silkworm, Bombyx mori, J. Phys. Chem. B, 109, 16937, 10.1021/jp050883m
Zhou, 2003, Copper in the silk formation process of Bombyx mori silkworm, FEBS Lett., 554, 337, 10.1016/S0014-5793(03)01184-0
Zhou, 2005, Metal element contents in silk gland and silk fiber of Bombyx mori silkworm, Acta Chimica Sinica, 63, 1379
Zhou, 2007, Effect of Fe and Mn on the conformation transition of Bombyx mori silk fibroin, Acta Chimica Sinica, 65, 2197
Zong, 2004, Effect of pH and copper(II) on the conformation transitions of silk fibroin based on EPR, NMR, and Raman spectroscopy, Biochemistry, 43, 11932, 10.1021/bi049455h
Zhu, 2007, Morphology and structure of electrospun mats from regenerated silk fibroin aqueous solutions with adjusting pH, Int. J. Biol. Macromol., 41, 469, 10.1016/j.ijbiomac.2007.06.006
Zuo, 2007, Effect on properties of regenerated silk fibroin fiber coagulated with aqueous Methanol/Ethanol, J. Appl. Polym. Sci., 106, 53, 10.1002/app.26653