Những hiểu biết về vai trò của vi sinh vật trong chất thải lúa và cải dầu như những chất hấp thụ tiềm năng cho việc loại bỏ kim loại

X. Shen1,2, J. Zhao2,3, N. Bonet-Garcia4, E. Villagrasa4, A. Solé4, X. Liao1, C. Palet3
1Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Wuhan, China
2Key Laboratory of Optoelectronic Devices and Systems, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
3GTS-UAB Research Group, Department of Chemistry, Facultat de Ciències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
4Department of Genetics and Microbiology, Facultat de Ciències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain

Tóm tắt

Chất thải nông nghiệp từ lúa và cải dầu, như là sinh khối không sống, được đề xuất cho việc khắc phục kim loại nặng trong nước thải ô nhiễm (chromium, cadmium, copper và lead). Đặc trưng lý hóa của những sinh khối này cho thấy bề mặt của cả hai chất hấp thụ đều mang điện tích âm (tiềm năng zeta), diện tích bề mặt của chất hấp thụ lần lượt là 4.39 và 40.7 (theo phương pháp Brunauer–Emmett–Teller), và các nhóm chức chính là carboxylic và hydroxyl (quang phổ hồng ngoại băng giữa phản xạ toàn phần). Mục đích chính của công trình này là đánh giá những hiểu biết về vi sinh vật liên kết với những sinh khối không sống này trong việc loại bỏ kim loại nặng từ dung dịch nước tổng hợp, điều chỉnh tại pH 4.0 (điều kiện axit tốt nhất cho quá trình hấp thụ). Các chủng vi sinh vật (thuộc giống Bacillus trong lúa và giống Escherichia, Micrococcus và Staphylococcus trong cải dầu) loại bỏ kim loại nặng từ những dung dịch đã đề cập, chủ yếu theo dạng liên kết (consortia), với tỷ lệ đóng góp trên 80% tổng lượng kim loại. Hơn nữa, khi các vi sinh vật này có mặt trong sinh khối, chúng cung cấp hiệu ứng loại bỏ kim loại bổ sung, đặc biệt là trong hệ thống sinh khối cải dầu và với nhiều dung dịch kim loại nặng: cụ thể là loại bỏ Cr(III) với nồng độ 4 mmol/L, tăng từ 70% lên 100%. Những kiến thức này cho phép sử dụng các sinh khối không sống mà không cần bất kỳ xử lý đặc biệt nào chống lại vi sinh vật, trước khi sử dụng chúng như chất hấp thụ kim loại, điều này cho thấy tính khả thi tốt của chúng trong ứng dụng từ khía cạnh kinh tế.

Từ khóa

#kim loại nặng #sinh khối #vi sinh vật #khả năng hấp thụ #nước thải ô nhiễm

Tài liệu tham khảo

Abdel-Ghani N, El-Chaghaby G (2014) Biosorption for metal ions removal from aqueous solutions: a review of recent studies. Int J Latest Res Sci Technol 3(1):24–42 Alori ET, Glick BR, Babalola OO (2017) Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Front Microbiol 8:971. https://doi.org/10.3389/fmicb.2017.00971 Anthony JE (1931) Scientific apparatus and laboratory methods: a note on capsule staining. Science 73(1890):319–320. https://doi.org/10.1126/science.73.1890.319 Aparicio JD, Saez JM, Raimondo EE, Benimeli CS, Polti MA (2018) Comparative study of single and mixed cultures of actinobacteria for the bioremediation of co-contaminated matrices. J Environ Chem Eng 6:2310–2318. https://doi.org/10.1016/j.jece.2018.03.030 Ayangbenro AS, Babalola OO (2017) A new strategy for heavy metal polluted environments: a review of microbial biosorbents. Int J Environ Res Public Health 14:94. https://doi.org/10.3390/ijerph14010094 Azizullah A, Khattak MNK, Richter P, Häder DP (2011) Water pollution in Pakistan and its impact on public health: a review. Environ Int 37(2):479–497. https://doi.org/10.1016/j.envint.2010.10.007 Bergey DH, Holt JG (1994) Bergey’s manual of determinative bacteriology, 9th edn. Williams & Wilkins, Baltimore (Maryland) Bhattacharya A, Dey P, Gola D, Mishra A, Malik A, Patel N (2015) Assessment of Yamuna and associated drains used for irrigation in rural and peri-urban settings of Delhi NCR. Environ Monit Assess 187:4146. https://doi.org/10.1007/s10661-014-4146-2 Calderón OAR, Abdeldayem OM, Pugazhendhi A, Rene ER (2020) Current updates and perspectives of biosorption technology: an alternative for the removal of heavy metals from wastewater. Curr Pollut Rep 6:8–27. https://doi.org/10.1007/s40726-020-00135-7 Cárdenas-Aguiar E, Suárez G, Paz-Ferreiro J, Askeland MPJ, Méndez A, Gascó G (2020) Remediation of mining soils by combining Brassica napus growth and amendment with chars from manure waste. Chemosphere 261:127798. https://doi.org/10.1016/j.chemosphere.2020.127798 Carolin CF, Kumar PS, Saravanan A, Joshiba GJ, Naushad M (2017) Efficient techniques for the removal of toxic heavy metals from aquatic environment: a review. J Environ Chem Eng 5(3):2782–2799. https://doi.org/10.1016/j.jece.2017.05.029 Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y, Brown CT, Porras-Alfaro A, Kuske CR, Tiedje JM (2014) Ribosomal database project: data and tools for high throughput rRNA analysis. Nucleic Acids Res 42(D1):633–642. https://doi.org/10.1093/nar/gkt1244 Çolak F, Atar N, Yazicioğlu D, Olgun A (2011) Biosorption of lead from aqueous solutions by Bacillus strains possessing heavy-metal resistance. Chem Eng J 73(2):442–428. https://doi.org/10.1016/j.cej.2011.07.084 Dai L, Wang L, Li L, Liang T, Zhang Y, Ma C, Xing B (2018) Multivariate geostatistical analysis and source identification of heavy metals in the sediment of Poyang Lake in China. Sci Tot Environ 621:1433–1444. https://doi.org/10.1016/j.scitotenv.2017.10.085 Dipak P, Sankar NS (2015) Biological removal of phosphate using phosphate solubilizing bacterial consortium from synthetic wastewater: a laboratory scale. Environ Asia 8:1–8. https://doi.org/10.14456/ea.2015.1 Doetsch RN (1981) Determinative methods of light microscopy. In: Gerhardt P, Murray RGE, Costilow RN, Nester EW, Wood WA, Krieg NR, Phillips GB (eds) Manual of methods for general bacteriology. American Society for Microbiology, Washington, pp 21–33 El-Hassanin AS, Samak MR, Radwan SR, El-Chaghaby GA (2020) Preparation and characterization of biochar from rice straw and its application in soil remediation. Environ Nat Resour J 18(3):283–289. https://doi.org/10.32526/ennrj.18.3.2020.27 Fashola M, Ngole-Jeme V, Babalola O (2016) Heavy metal pollution from gold mines: environmental effects and bacterial strategies for resistance. Int J Environ Res 13:1047. https://doi.org/10.3390/ijerph13111047 Feizi M, Jalali M (2015) Removal of heavy metals from aqueous solutions using sunflower, potato, canola and walnut shell residues. J Taiwan Inst Chem Eng 54:125–136. https://doi.org/10.1016/j.jtice.2015.03.027 Food and Agriculture Organization of the United Nations (FAO) (2014) Global information and early warning system on food and agriculture (GIEWS), Food Outlook. Rome, Italy. 2014; pp 186. http://www.fao.org/giews/english/fo/index.htm. Ghaffar SH, Fan M (2014) Lignin in straw and its applications as an adhesive. Int J Adhes Adhes 48:92–101. https://doi.org/10.1016/j.ijadhadh.2013.09.001 Ghavami N, Alikhani HA, Pourbabaei AA, Besharati H (2017) Effects of two new siderophore-producing rhizobacteria on growth and iron content of maize and canola plants. J Plant Nutr 40(5):736–746. https://doi.org/10.1080/01904167.2016.1262409 Gupta P, Kumar V (2017) Value added phytoremediation of metal stressed soils using phosphate solubilizing microbial consortium. World J Microbiol Biotechnol 33:9. https://doi.org/10.1007/s11274-016-2176-3 Hashem A, Tabassum B, Abd_Allah EF (2019) Bacillus subtilis: a plant-growth promoting rhizobacterium that also impacts biotic stress. Saudi J Biol Sci 26(6):1291–1297. doi:https://doi.org/10.1016/j.sjbs.2019.05.004 Høvik HG, Sørheim R (1991) Improved method for phenotypical characterization of marine bacteria. J Microbiol Methods 13:231–241. https://doi.org/10.1016/0167-7012(91)90049-V Huang F, Gao LY, Deng JH, Chen SH, Cai KZ (2018) Quantitative contribution of Cd2+ adsorption mechanisms by chicken-manure-derived biochars. Environ Sci Pollut Res 25(28):28322–28334. https://doi.org/10.1007/s11356-018-2889-y Igiri BE, Okoduwa S, Idoko GO, Akabuogu EP, Adeyi AO, Ejiogu IK (2018) Toxicity and bioremediation of heavy metals contaminated ecosystem from tannery wastewater: a review. J Toxic. https://doi.org/10.1155/2018/2568038 Jain N, Johnson TA, Kumar A, Mishra S, Gupta N (2015) Biosorption of Cd (II) on jatropha fruit coat and seed coat. Environ Monit Assess 187(7):1–12. https://doi.org/10.1007/s10661-015-4658-4 Jin Y, Luan Y, Ning Y, Wang L (2018) Effects and mechanisms of microbial remediation of heavy metals in soil: a critical review. Appl Sci 8:1336. https://doi.org/10.3390/app8081336 Kim JR, Kan E (2016) Heterogeneous photocatalytic degradation of sulfamethoxazole in water using a biochar-supported TiO2 photocatalyst. J Environ Manage 180:94–101. https://doi.org/10.1016/j.jenvman.2016.05.016 Kumar D, Khan EA (2021) Remediation and detection techniques for heavy metals in the environment. Heavy Met Environ. Elsevier. pp 205–222. https://doi.org/10.1016/B978-0-12-821656-9.00012-2 Luo S, Cai T, Liu C, Zhang Y, Liu Y, Ma J, Wei Y, Ali O, Zhang S (2017) Fast adsorption of heavy metal ions by waste cotton fabrics based double network hydrogel and influencing factors insight. J Hazard Mater 344:1034–1042. https://doi.org/10.1016/j.jhazmat.2017.11.041 Luyt CD, Tandlich R, Muller WJ, Wilhelmi BS (2012) Microbial monitoring of surface water in south Africa: an overview. Int J Environ Res Public Health 9(8):2669–2693. https://doi.org/10.3390/ijerph9082669 Maldonado J, Diestra E, Domènech AM, Villagrasa E, Puyen ZM, Esteve I, Solé A (2010) Isolation and identification of a bacterium with high tolerance to lead and copper from a marine microbial mat in Spain. Ann Microbiol 60(1):113–120. https://doi.org/10.1007/s13213-010-0019-2 Hubbe MA (2021) Insisting upon meaningful results from adsorption experiments. Sep Purif Rev. https://doi.org/10.1080/15422119.2021.1888299 Martín JR, De Arana C, Ramos-Miras JJ, Gil C, Boluda R (2015) Impact of 70 years urban growth associated with heavy metal pollution. Environ Pollut 196:156–163. https://doi.org/10.1016/j.envpol.2014.10.014 Mebane CA, Schmidt TS, Miller JL, Balistrieri LS (2020) Bioaccumulation and toxicity of cadmium, copper, nickel, and zinc and their mixtures to aquatic insect communities. Environ Toxicol Chem 39(4):812–833. https://doi.org/10.1002/etc.4560 Mosa KA, Saadoun I, Kumar K, Helmy M, Dhankher OP (2016) Potential biotechnological strategies for the cleanup of heavy metals and metalloids. Front Plant Sci 7:303. https://doi.org/10.3389/fpls.2016.00303 Nath D, Maurya BR, Meena VS (2017) Documentation of five potassium-and phosphorus-solubilizing bacteria for their K and P-solubilization ability from various minerals. Biocatal Agric Biotechnol 10:174–181. https://doi.org/10.1016/j.bcab.2017.03.007 Nguyen TAH, Ngo HH, Guo WS, Zhang J, Liang S, Yue QY, Li Q, Nguyen TV (2013) Applicability of agricultural waste and by-products for adsorptive removal of heavy metals from wastewater. BioresTechnol 148:574–585. https://doi.org/10.1016/j.biortech.2013.08.124 Nguyen VK, Lee MH, Park HJ, Lee JU (2015) Bioleaching of arsenic and heavy metals from mine tailings by pure and mixed cultures of Acidithiobacillus spp. J Ind Eng Chem 21:451–458. https://doi.org/10.1016/j.jiec.2014.03.004 Plank J, Christian H (2007) Impact of zeta potential of early cement hydration phases on superplasticizer adsorption. Cem Concr Res 37(4):537–542doi:https://doi.org/10.1016/j.cemconres.2007.01.007 Sayah RS, Kaneene JB, Johnson Y, Miller RA (2005) Patterns of antimicrobial resistance observed in Escherichia coli isolates obtained from domestic- and wild-animal fecal samples, human septage, and surface water. Appl Environ Microbiol 71(3):1394–1404. https://doi.org/10.1128/AEM.71.3.1394-1404.2005 Schaeffer AB, Fulton MD (1933) A simplified method of staining endospores. Science 77(1990):194. https://doi.org/10.1126/science.77.1990.194 Sčíban M, Radetic B, Kevrešan Z, Klašnja M (2007) Adsorption of heavy metals from electroplating wastewater by wood sawdust. Bioresour Technol 98(2):402–409. doi:https://doi.org/10.1016/j.biortech.2005.12.014 Senthil Kumar P, Gunasundari E (2018) Bioremediation of heavy metals. In: Varjani S, Agarwal A, Gnansounou E, Gurunathan B (eds) Bioremediation: applications for environmental protection and management. Energy Environ Sustain. Springer, Singapore. doi:https://doi.org/10.1007/978-981-10-7485-1_9 Sharma RK, Wooten JB, Baliga VL, Lin XH, Chan WG, Hajaligol MR (2004) Characterization of chars from pyrolysis of lignin. Fuel 83(11–12):1469–1482. https://doi.org/10.1016/j.fuel.2003.11.015 Shen Z, Zhang Y, Jin F, McMillan O, Al-Tabbaa A (2017) Qualitative and quantitative characterisation of adsorption mechanisms of lead on four biochars. Sci Tot Environ 609:1401–1410. https://doi.org/10.1016/j.scitotenv.2017.08.008 Song P, Tao HC (2013) Cell surface engineering of microorganisms towards adsorption of heavy metals. Crit Rev Microbiol 41:140–149. https://doi.org/10.3109/1040841X.2013.813898 Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metal toxicity and the environment. Exp Suppl 101:133–164. https://doi.org/10.1007/978-3-7643-8340-4_6 Vijver MG, Elliott EG, Peijnenburg WJ, De Snoo GR (2011) Response predictions for organisms water-exposed to metal mixtures: a meta-analysis. Environ Toxicol Chem 30(6):1482–1487. https://doi.org/10.1002/etc.499 Villagrasa E, Palet C, López-Gómez I, Gutiérrez D, Esteve I, Sánchez-Chardi A, Solé A (2021) Cellular strategies against metals exposure and metal localization patterns linked to phosphorus pathways in Ochrobactrum anthropi DE2010. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2020.123808 Wang ZY, Liu GC, Zheng H, Li FM, Ngo HH, Guo WS, Liu C, Chen L, Xing BS (2015) Investigating the mechanisms of biochar’s removal of lead from solution. Bioresour Technol 177:308–317. https://doi.org/10.1016/j.biortech.2014.11.077 Wood AP. and Kelly DP (2010) Skin microbiology, body odor, and methylotrophic bacteria. In: Timmis KN (ed), Handbook of hydrocarbon and lipid microbiology. Doi:https://doi.org/10.1007/978-3-540-77587-4_243 Wu M, Liang J, Tang J, Li G, Shan S, Guo Z, Deng L (2017) Decontamination of multiple heavy metals-containing effluents through microbial biotechnology. J Hazard Mater 337:189–197. https://doi.org/10.1016/j.jhazmat.2017.05.006 Yin K, Wang QN, Chen LX (2019) Microorganisms remediation strategies towards heavy metals. Chem Eng J 360:1553–1563. https://doi.org/10.1016/j.cej.2018.10.226 Yu P, Wang X, Zhang K et al (2020) Continuous purification of simulated wastewater based on rice straw composites for oil/water separation and removal of heavy metal ions. Cellulose 27:5223–5239. https://doi.org/10.1007/s10570-020-03135-4 Yuan L, Zhi W, Liu Y, Karyala S, Vikesland PJ, Chen X, Zhang H (2015) Lead toxicity to the performance, viability, and community composition of activated sludge microorganisms. Environ Sci Technol 49(2):824–830. https://doi.org/10.1021/es504207c Zhan C, Sharma PR, He H, Sharma SK, McCauley-Pearl A, Wang R, Hsiao BS (2020) Rice husk based nanocellulose scaffolds for highly efficient removal of heavy metal ions from contaminated water. Environ Sci: Water Res Technol 6(11):3080–3090. https://doi.org/10.1039/D0EW00545B Zhang H, Carrillo-Navarrete F, Palet C (2020) Human hair biogenic fiber as a biosorbent of multiple heavy metals from aqueous solutions. J Natural Fibers. https://doi.org/10.1080/15440478.2020.1798841 Zhao JJ, Shen XJ, Domene X, Alcañiz JM, Liao X, Palet C (2019) Comparison of biochars derived from different types of feedstock and their potential for heavy metal removal in multiple-metal solutions. Sci Rep 9:9869. https://doi.org/10.1038/s41598-019-46234-4 Zhao JJ, Boada R, Cibin G, Palet C (2020a) Enhancement of selective adsorption of Cr species via modification of pine biomass. Sci Total Environ 20(756):143816. https://doi.org/10.1016/j.scitotenv.2020.143816 Zhao L, Gong D, Zhao W, Lin l, Yang W, Guo W, Tang X, Qingyun Li (2020b) Spatial-temporal distribution characteristics and health risk assessment of heavy metals in surface water of the Three Gorges Reservoir, China. Sci Total Environ 704:134883. doi:https://doi.org/10.1016/j.scitotenv.2019.134883 Zhao Z, Zhou WJ (2019) Insight into interaction between biochar and soil minerals in changing biochar properties and adsorption capacities for Sulfamethoxazole. Environ Pollut 245:208–217. https://doi.org/10.1016/j.envpol.2018.11.013 Zhou H, Zhou X, Zeng M, Liao BH, Liu L, Yang WT, Wu YM, Qin YQ, Wang YJ (2014) Effects of combined amendments on heavy metal accumulation in rice (Oryza sativa L.) planted on contaminated paddy soil. Ecotoxicol Environ Saf 101:226–232. https://doi.org/10.1016/j.ecoenv.2014.01.001