Insights into the respiratory electron transfer pathway from the structure of nitrate reductase A

Nature Structural and Molecular Biology - Tập 10 Số 9 - Trang 681-687 - 2003
Michela G. Bertero1, Richard A. Rothery2, M. Palak2, Huiying Hou3, Daniel Lim3, Francis Blasco4, Joël H. Weiner2, N.C.J. Strynadka3
1Department of Biochemistry, University of British Columbia, 2146 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada.
2Department of Biochemistry, CIHR Membrane Protein Research Group, University of Alberta, 4-25 Medical Sciences Building, Edmonton, Canada
3Department of Biochemistry, University of British Columbia, 2146 Health Sciences Mall, Vancouver, Canada
4Laboratoire de Chimie Bactérienne, CNRS, 31 chemin Joseph Aiguier, Marseille, France

Tóm tắt

Từ khóa


Tài liệu tham khảo

Blasco, F. et al. The coordination and function of the redox centres of the membrane-bound nitrate reductases. Cell. Mol. Life Sci. 58, 179–193 (2001).

Rothery, R.A., Blasco, F., Magalon, A. & Weiner, J.H. The diheme cytochrome b subunit (Narl) of Escherichia coli nitrate reductase A (NarGHI): structure, function, and interaction with quinols. J. Mol. Microbiol. Biotechnol. 3, 273–283 (2001).

Mitchell, P. Possible molecular mechanisms of the protonmotive function of cytochrome systems. J. Theor. Biol. 62, 327–367 (1976).

Jormakka, M., Tornroth, S., Byrne, B. & Iwata, S. Molecular basis of proton motive force generation: structure of formate dehydrogenase-N. Science 295, 1863–1868 (2002).

von Heijne, G. Membrane protein structure prediction. Hydrophobicity analysis and the positive-inside rule. J. Mol. Biol. 225, 487–494 (1992).

Forget, P. The bacterial nitrate reductases. Solubilization, purification and properties of the enzyme A of Escherichia coli K12. Eur. J. Biochem. 42, 325–332 (1974).

Jones, R.W. & Garland, P.B. Sites and specificity of the reaction of bipyridylium compounds with anaerobic respiratory enzymes of Escherichia coli. Effects of permeability barriers imposed by the cytoplasmic membrane. Biochem. J. 164, 199–211 (1977).

Page, C.C., Moser, C.C., Chen, X. & Dutton, P.L. Natural engineering principles of electron tunnelling in biological oxidation-reduction. Nature 402, 47–52 (1999).

Lancaster, C.R., Kroger, A., Auer, M. & Michel, H. Structure of fumarate reductase from Wolinella succinogenes at 2.2 Å resolution. Nature 402, 377–385 (1999).

Xia, D. et al. Crystal structure of the cytochrome bc1 complex from bovine heart mitochondria. Science 277, 60–66 (1997).

Berks, B.C., Ferguson, S.J., Moir, J.W. & Richardson, D.J. Enzymes and associated electron transport systems that catalyse the respiratory reduction of nitrogen oxides and oxyanions. Biochim. Biophys. Acta 1232, 97–173 (1995).

Schindelin, H., Kisker, C., Hilton, J., Rajagopalan, K.V. & Rees, D.C. Crystal structure of DMSO reductase: redox-linked changes in molybdopterin coordination. Science 272, 1615–1621 (1996).

Schneider, F. et al. Crystal structure of dimethyl sulfoxide reductase from Rhodobacter capsulatus at 1.88 Å resolution. J. Mol. Biol. 263, 53–69 (1996).

Boyington, J.C., Gladyshev, V.N., Khangulov, S.V., Stadtman, T.C. & Sun, P.D. Crystal structure of formate dehydrogenase H: catalysis involving Mo, molybdopterin, selenocysteine, and an Fe4-S4 cluster. Science 275, 1305–1308 (1997).

Czjzek, M. et al. Crystal structure of oxidized trimethylamine N-oxide reductase from Shewanella massilia at 2.5 Å resolution. J. Mol. Biol. 284, 435–447 (1998).

Dias, J.M. et al. Crystal structure of the first dissimilatory nitrate reductase at 1.9 Å solved by MAD methods. Struct. Fold. Des. 7, 65–79 (1999).

Blasco, F. et al. NarJ is a specific chaperone required for molybdenum cofactor assembly in nitrate reductase A of Escherichia coli. Mol. Microbiol. 28, 435–447 (1998).

Volbeda, A. et al. Crystal structure of the nickel-iron hydrogenase from Desulfovibrio gigas. Nature 373, 580–587 (1995).

Peters, J.W., Lanzilotta, W.N., Lemon, B.J. & Seefeldt, L.C. X-ray crystal structure of the Fe-only hydrogenase (CpI) from Clostridium pasteurianum to 1.8 Å resolution. Science 282, 1853–1858 (1998).

Magalon, A. et al. Molybdenum cofactor properties and [Fe-S] cluster coordination in Escherichia coli nitrate reductase A: investigation by site-directed mutagenesis of the conserved His-50 residue in the NarG subunit. Biochemistry 37, 7363–7370 (1998).

Rabenstein, D., Greenberg, M. & Saetre, R. Potentiometric and polarimetric studies of complexation of molybdenum(VI) and tungsten(VI) by aspartic acid and glutamic acid. Inorg. Chem. 16, 1241–1243 (1977).

Enemark, J. & Garner, C. The coordination chemistry and function of the molybdenum centres of the oxomolybdoenzymes. J. Biol. Inorg. Chem. 2, 817–822 (1997).

Berks, B.C. et al. Sequence analysis of subunits of the membrane-bound nitrate reductase from a denitrifying bacterium: the integral membrane subunit provides a prototype for the dihaem electron-carrying arm of a redox loop. Mol. Microbiol. 15, 319–331 (1995).

Sieker, L.C., Adman, E. & Jensen, L.H. Structure of the Fe-S complex in a bacterial ferredoxin. Nature 235, 40–42 (1972).

Stephens, P.J., Jollie, D.R. & Warshel, A. Protein control of redox potentials of iron-sulfur proteins. Chem. Rev. 96, 2491–2514 (1996).

Yankovskaya, V. et al. Architecture of succinate dehydrogenase and reactive oxygen species generation. Science 299, 700–704 (2003).

Zhao, Z., Rothery, R.A. & Weiner, J.H. Transient kinetic studies of heme reduction in Escherichia coli nitrate reductase A (NarGHI) by menaquinol. Biochemistry 42, 5403–5413 (2003).

Blasco, F. et al. Formation of active heterologous nitrate reductases between nitrate reductases A and Z of Escherichia coli. Mol. Microbiol. 6, 209–219 (1992).

Guigliarelli, B. et al. Complete coordination of the four Fe-S centers of the β subunit from Escherichia coli nitrate reductase. Physiological, biochemical, and EPR characterization of site-directed mutants lacking the highest or lowest potential [4Fe-4S] clusters. Biochemistry 35, 4828–4836 (1996).

Otwinowski, Z.M. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

Terwilliger, T. & Berendzen, J. Automated MAD and MIR structure solution. Acta Crystallogr. D 55, 849–861 (1999).

Brünger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

De La Fortelle, E.B., Gerard. Maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods. Methods Enzymol. 276, 472–494 (1997).

McRee, D.E. XtalView/Xfit—a versatile program for manipulating atomic coordinates and electron density. J. Struct. Biol. 125, 156–165 (1999).

Kraulis, P.J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

Bacon, D. & Anderson, W. A fast algorithm for rendering space-filling molecule pictures. J. Mol. Graph. 6, 219–220 (1988).

Honig, B. & Nicholls, A. Classical electrostatics in biology and chemistry. Science 268, 1144–1149 (1995).