Insights into the developing fovea revealed by imaging
Tài liệu tham khảo
Akerblom, 2011, Central macular thickness is correlated with gestational age at birth in prematurely born children, Br. J. Ophthalmol., 95, 799, 10.1136/bjo.2010.184747
Akula, 2020, The fovea in retinopathy of prematurity, Invest. Ophthalmol. Vis. Sci., 61, 28, 10.1167/iovs.61.11.28
Akula, 2007, Rod photoreceptor function predicts blood vessel abnormality in retinopathy of prematurity, Invest. Ophthalmol. Vis. Sci., 48, 4351, 10.1167/iovs.07-0204
Alabduljalil, 2019, Demonstration of anatomical development of the human macula within the first 5 years of life using handheld OCT, Int. Ophthalmol., 39, 1533, 10.1007/s10792-018-0966-3
Allingham, 2013, Racial variation in optic nerve head parameters quantified in healthy newborns by handheld spectral domain optical coherence tomography, J. Am. Assoc. Pediatr. Ophthalmol. Strabismus, 17, 501, 10.1016/j.jaapos.2013.06.014
Ancel, 2015, Survival and morbidity of preterm children born at 22 through 34 weeks' gestation in France in 2011: results of the EPIPAGE-2 cohort study, JAMA Pediatr., 169, 230, 10.1001/jamapediatrics.2014.3351
Anwar, 2020, Potential utility of foveal morphology in preterm infants measured using hand-held optical coherence tomography in retinopathy of prematurity screening, Retina, 40, 1592, 10.1097/IAE.0000000000002622
Bach, 1914
Balasubramanian, 2019, Relationship between retinal thickness profiles and visual outcomes in young adults born extremely preterm: the EPICure@19 study, Ophthalmology, 126, 107, 10.1016/j.ophtha.2018.07.030
Balasubramanian, 2019, Visual function and optical coherence tomography angiography features in children born preterm, Retina, 39, 2233, 10.1097/IAE.0000000000002301
Borrelli, 2019, Macular microvascular networks in healthy pediatric subjects, Retina, 39, 1216, 10.1097/IAE.0000000000002123
Borrelli, 2018, OCT angiography and evaluation of the choroid and choroidal vascular disorders, Prog. Retin. Eye Res., 67, 30, 10.1016/j.preteyeres.2018.07.002
Bowl, 2018, OCT angiography in young children with a history of retinopathy of prematurity, Ophthalmol Retina., 2, 972, 10.1016/j.oret.2018.02.004
Bowl, 2016, OCT-based macular structure-function correlation in dependence on birth weight and gestational age-the giessen long-term ROP study, Invest. Ophthalmol. Vis. Sci., 57, Oct235, 10.1167/iovs.15-18843
Bringmann, 2006, Müller cells in the healthy and diseased retina, Prog. Retin. Eye Res., 25, 397, 10.1016/j.preteyeres.2006.05.003
Bringmann, 2018, The primate fovea: structure, function and development, Prog. Retin. Eye Res., 66, 49, 10.1016/j.preteyeres.2018.03.006
Cabrera, 2012, Subfoveal fluid in healthy full-term newborns observed by handheld spectral-domain optical coherence tomography, Am. J. Ophthalmol., 153, 167, 10.1016/j.ajo.2011.06.017
Cabrera, 2013, Macular findings in healthy full-term Hispanic newborns observed by hand-held spectral-domain optical coherence tomography, Ophthalmic. Surg. Lasers Imaging Retina., 44, 448, 10.3928/23258160-20130801-01
Campbell, 2017, Handheld optical coherence tomography angiography and ultra-wide-field optical coherence tomography in retinopathy of prematurity, JAMA Ophthalmol, 135, 977, 10.1001/jamaophthalmol.2017.2481
Campbell, 2017, Detailed vascular anatomy of the human retina by projection-resolved optical coherence tomography angiography, Sci. Rep., 7, 42201, 10.1038/srep42201
Carreira, 2021, Long-term macular vascular density measured by OCT-A in children with retinopathy of prematurity with and without need of laser treatment, Eur. J. Ophthalmol., 31, 3337, 10.1177/1120672120983204
Chavala, 2009, Insights into advanced retinopathy of prematurity using handheld spectral domain optical coherence tomography imaging, Ophthalmology, 116, 2448, 10.1016/j.ophtha.2009.06.003
Chen, 2020, Slow progressive perifoveal vascular formation in an infant with aggressive posterior retinopathy of prematurity, J aapos, 24, 323, 10.1016/j.jaapos.2020.07.007
Chen, 2018, Spectral-domain OCT findings of retinal vascular-avascular junction in infants with retinopathy of prematurity, Ophthalmol Retina., 2, 963, 10.1016/j.oret.2018.02.001
Chen, 2018, Fluorescein angiographic characteristics of macular edema during infancy, JAMA Ophthalmol, 136, 538, 10.1001/jamaophthalmol.2018.0467
Chen, 2020, Differentiating retinal detachment and retinoschisis using handheld optical coherence tomography in stage 4 retinopathy of prematurity, JAMA Ophthalmol, 138, 81, 10.1001/jamaophthalmol.2019.4796
Chen, 2020, Repeatability and reproducibility of axial and lateral measurements on handheld optical coherence tomography systems compared with tabletop system, Transl. Vis. Sci. Technol., 9, 25, 10.1167/tvst.9.11.25
Chen, 2019, Capturing macular vascular development in an infant with retinopathy of prematurity, JAMA Ophthalmol, 137, 1083, 10.1001/jamaophthalmol.2019.2165
Chen, 2020, Foveal microvasculature, refractive errors, optical biometry and their correlations in school-aged children with retinopathy of prematurity after intravitreal antivascular endothelial growth factors or laser photocoagulation, Br. J. Ophthalmol., 104, 691, 10.1136/bjophthalmol-2019-314610
Chen, 2019, Foveal microvascular anomalies on optical coherence tomography angiography and the correlation with foveal thickness and visual acuity in retinopathy of prematurity, Graefes Arch. Clin. Exp. Ophthalmol., 257, 23, 10.1007/s00417-018-4162-y
Chievitz, 1887
Cuenca, 2018, Cellular characterization of OCT and outer retinal bands using specific immunohistochemistry markers and clinical implications, Ophthalmology, 125, 407, 10.1016/j.ophtha.2017.09.016
Cuenca, 2020, Interpretation of OCT and OCTA images from a histological approach: clinical and experimental implications, Prog. Retin. Eye Res., 77, 10.1016/j.preteyeres.2019.100828
Curcio, 1990, Human photoreceptor topography, J. Comp. Neurol., 292, 497, 10.1002/cne.902920402
Daruich, 2018, Mechanisms of macular edema: beyond the surface, Prog. Retin. Eye Res., 63, 20, 10.1016/j.preteyeres.2017.10.006
Diaz-Araya, 1992, Evidence of photoreceptor migration during early foveal development: a quantitative analysis of human fetal retinae, Vis. Neurosci., 8, 505, 10.1017/S0952523800005605
Dubis, 2012, Evaluation of normal human foveal development using optical coherence tomography and histologic examination, Arch. Ophthalmol., 130, 1291, 10.1001/archophthalmol.2012.2270
Dubis, 2012, Relationship between the foveal avascular zone and foveal pit morphology, Invest. Ophthalmol. Vis. Sci., 53, 1628, 10.1167/iovs.11-8488
Dubis, 2013, Subclinical macular findings in infants screened for retinopathy of prematurity with spectral-domain optical coherence tomography, Ophthalmology, 120, 1665, 10.1016/j.ophtha.2013.01.028
Engle, 2004, Age terminology during the perinatal period, Pediatrics, 114, 1362, 10.1542/peds.2004-1915
Erol, 2014, Macular findings obtained by spectral domain optical coherence tomography in retinopathy of prematurity, J. Ophthalmol, 2014, 10.1155/2014/468653
Falavarjani, 2017, Optical coherence tomography angiography of the fovea in children born preterm, Retina, 37, 2289, 10.1097/IAE.0000000000001471
Falavarjani, 2018, Optical coherence tomography angiography of the macula in adults with a history of preterm birth, Ophthalmic. Surg. Lasers Imaging Retina., 49, 122, 10.3928/23258160-20180129-06
Fulton, 1996, Photoreceptor function in infants and children with a history of mild retinopathy of prematurity, J. Opt. Soc. Am. Opt Image Sci. Vis., 13, 566, 10.1364/JOSAA.13.000566
Fulton, 2009, The neurovascular retina in retinopathy of prematurity, Prog. Retin. Eye Res., 28, 452, 10.1016/j.preteyeres.2009.06.003
Gariano, 2003, Cellular mechanisms in retinal vascular development, Prog. Retin. Eye Res., 22, 295, 10.1016/S1350-9462(02)00062-9
Gariano, 2005, Retinal angiogenesis in development and disease, Nature, 438, 960, 10.1038/nature04482
Gariano, 1994, Vascular development in primate retina: comparison of laminar plexus formation in monkey and human, Invest. Ophthalmol. Vis. Sci., 35, 3442
Gariano, 2000, Development of the foveal avascular zone, Ophthalmology, 107, 1026, 10.1016/S0161-6420(00)00050-6
Gursoy, 2016, The macular findings on spectral-domain optical coherence tomography in premature infants with or without retinopathy of prematurity, Int. Ophthalmol., 36, 591, 10.1007/s10792-016-0176-9
Hammer, 2008, Foveal fine structure in retinopathy of prematurity: an adaptive optics Fourier domain optical coherence tomography study, Invest. Ophthalmol. Vis. Sci., 49, 2061, 10.1167/iovs.07-1228
Hansen, 2017, The neural retina in retinopathy of prematurity, Prog. Retin. Eye Res., 56, 32, 10.1016/j.preteyeres.2016.09.004
He, 2021, Early postnatal oxygen exposure predicts choroidal thinning in neonates, Invest. Ophthalmol. Vis. Sci., 62, 23, 10.1167/iovs.62.9.23
Hee, 1995, Optical coherence tomography of the human retina, Arch. Ophthalmol., 113, 325, 10.1001/archopht.1995.01100030081025
Hendrickson, 1992, A morphological comparison of foveal development in man and monkey, Eye, 6, 136, 10.1038/eye.1992.29
Hendrickson, 2016, Development of retinal layers in prenatal human retina, Am. J. Ophthalmol., 161, 29, 10.1016/j.ajo.2015.09.023
Hendrickson, 2006, Development of the human retina in the absence of ganglion cells, Exp. Eye Res., 83, 920, 10.1016/j.exer.2006.04.017
Hendrickson, 2012, Histologic development of the human fovea from midgestation to maturity, Am. J. Ophthalmol., 154, 767, 10.1016/j.ajo.2012.05.007
Hendrickson, 2019, Development of cone photoreceptors and their synapses in the human and monkey fovea, J. Comp. Neurol., 527, 38, 10.1002/cne.24170
Hendrickson, 1994, Primate foveal development: a microcosm of current questions in neurobiology, Invest. Ophthalmol. Vis. Sci., 35, 3129
Hendrickson, 1984, The morphological development of the human fovea, Ophthalmology, 91, 603, 10.1016/S0161-6420(84)34247-6
Henkind, 1975, Development of macular vessels in monkey and cat, Br. J. Ophthalmol., 59, 703, 10.1136/bjo.59.12.703
Hollenberg, 1973, Human retinal development: ultrastructure of the outer retina, Am. J. Anat., 137, 357, 10.1002/aja.1001370402
Hsu, 2018, Visualizing macular microvasculature anomalies in 2 infants with treated retinopathy of prematurity, JAMA Ophthalmol, 136, 1422, 10.1001/jamaophthalmol.2018.3926
Hsu, 2019, Imaging infant retinal vasculature with OCT angiography, Ophthalmol Retina., 3, 95, 10.1016/j.oret.2018.06.017
Hsu, 2019, Assessment of macular microvasculature in healthy eyes of infants and children using OCT angiography, Ophthalmology, 126, 1703, 10.1016/j.ophtha.2019.06.028
Huang, 1991, Optical coherence tomography, Science, 254, 1178, 10.1126/science.1957169
Hughes, 2000, Vascularization of the human fetal retina: roles of vasculogenesis and angiogenesis, Invest. Ophthalmol. Vis. Sci., 41, 1217
Jayaraman, 2012, High-sweep-rate 1310 nm MEMS-VCSEL with 150 nm continuous tuning range, Electron. Lett., 48, 867, 10.1049/el.2012.1552
John, 2012
Joshi, 2006, Posterior hyaloid contracture in pediatric vitreoretinopathies, Retina, 26, S38, 10.1097/01.iae.0000244287.63757.5a
Joshi, 2006, Optical coherence tomography findings in stage 4A retinopathy of prematurity: a theory for visual variability, Ophthalmology, 113, 657, 10.1016/j.ophtha.2006.01.007
Kadomoto, 2021, Human foveal cone and müller cells examined by adaptive optics optical coherence tomography, Transl Vis Sci Technol, 10, 17, 10.1167/tvst.10.11.17
Kothari, 2020, Arm-mounted optical coherence tomography angiography in extremely low birth weight neonates with retinopathy of prematurity, Am J Ophthalmol Case Rep, 18, 100624, 10.1016/j.ajoc.2020.100624
Lee, 2011, Macular features from spectral-domain optical coherence tomography as an adjunct to indirect ophthalmoscopy in retinopathy of prematurity, Retina, 31, 1470, 10.1097/IAE.0b013e31821dfa6d
Lee, 2015, In vivo foveal development using optical coherence tomography, Invest. Ophthalmol. Vis. Sci., 56, 4537, 10.1167/iovs.15-16542
Lepore, 2014, Intravitreal bevacizumab versus laser treatment in type 1 retinopathy of prematurity: report on fluorescein angiographic findings, Ophthalmology, 121, 2212, 10.1016/j.ophtha.2014.05.015
Liang, 2021, Foveal structure, function and microvascular morphology in school-age children with laser-treated retinopathy of prematurity, Eye, 35, 1605, 10.1038/s41433-020-01127-z
Lujan, 2015, Directional optical coherence tomography provides accurate outer nuclear layer and henle fiber layer measurements, Retina, 35, 1511, 10.1097/IAE.0000000000000527
Maldonado, 2011, Reversible retinal edema in an infant with neonatal hemochromatosis and liver failure, J AAPOS, 15, 91, 10.1016/j.jaapos.2010.11.016
Maldonado, 2010, Optimizing hand-held spectral domain optical coherence tomography imaging for neonates, infants, and children, Invest. Ophthalmol. Vis. Sci., 51, 2678, 10.1167/iovs.09-4403
Maldonado, 2012, Spectral-domain optical coherence tomographic assessment of severity of cystoid macular edema in retinopathy of prematurity, Arch. Ophthalmol., 130, 569, 10.1001/archopthalmol.2011.1846
Maldonado, 2011, Dynamics of human foveal development after premature birth, Ophthalmology, 118, 2315, 10.1016/j.ophtha.2011.05.028
Mangalesh, 2019, Three-dimensional pattern of extraretinal neovascular development in retinopathy of prematurity, Graefes Arch. Clin. Exp. Ophthalmol., 257, 677, 10.1007/s00417-019-04274-6
Mangalesh, 2021, Macular OCT characteristics at 36 Weeks' postmenstrual age in infants examined for retinopathy of prematurity, Ophthalmol Retina., 5, 580, 10.1016/j.oret.2020.09.004
Mangalesh, 2021, Preterm infant stress during handheld optical coherence tomography vs binocular indirect ophthalmoscopy examination for retinopathy of prematurity, JAMA Ophthalmol, 139, 567, 10.1001/jamaophthalmol.2021.0377
Mangalesh, 2020, Morphological characteristics of early- versus late-onset macular edema in preterm infants, J AAPOS, 24, 303, 10.1016/j.jaapos.2020.06.006
Mann, 1964
Mann, 1928
Michalak, 2021, Systemic factors associated with a thinner choroid in preterm infants, Ophthalmol. Sci., 1, 10.1016/j.xops.2021.100032
Miki, 2019, The size of the foveal avascular zone is associated with foveal thickness and structure in premature children, J Ophthalmol, 2019, 10.1155/2019/8340729
Mintz-Hittner, 1999, A small foveal avascular zone may be an historic mark of prematurity, Ophthalmology, 106, 1409, 10.1016/S0161-6420(99)00732-0
Moreno, 2013, Choroid development and feasibility of choroidal imaging in the preterm and term infants utilizing SD-OCT, Invest. Ophthalmol. Vis. Sci., 54, 4140, 10.1167/iovs.12-11471
Moshiri, 2019, Handheld swept-source optical coherence tomography with angiography in awake premature neonates, Quant. Imag. Med. Surg., 9, 1495, 10.21037/qims.2019.09.01
Ni, 2021, High-speed and widefield handheld swept-source OCT angiography with a VCSEL light source, Biomed. Opt Express, 12, 3553, 10.1364/BOE.425411
Nonobe, 2019, Optical coherence tomography angiography of the foveal avascular zone in children with a history of treatment-requiring retinopathy of prematurity, Retina, 39, 111, 10.1097/IAE.0000000000001937
O'Sullivan, 2021, Foveal differentiation and inner retinal displacement are arrested in extremely premature infants, Invest. Ophthalmol. Vis. Sci., 62, 25, 10.1167/iovs.62.2.25
Otani, 2011, Improved visualization of Henle fiber layer by changing the measurement beam angle on optical coherence tomography, Retina, 31, 497, 10.1097/IAE.0b013e3181ed8dae
Owen, 2011, Retinal arteriolar tortuosity and cardiovascular risk factors in a multi-ethnic population study of 10-year-old children; the Child Heart and Health Study in England (CHASE), Arterioscler. Thromb. Vasc. Biol., 31, 1933, 10.1161/ATVBAHA.111.225219
Patel, 2016, Optic nerve head development in healthy infants and children using handheld spectral-domain optical coherence tomography, Ophthalmology, 123, 2147, 10.1016/j.ophtha.2016.06.057
Patel, 2021, Depth-resolved visualization of perifoveal retinal vasculature in preterm infants using handheld optical coherence tomography angiography, Transl Vis Sci Technol, 10, 10, 10.1167/tvst.10.9.10
Periti, 2019, Microvascular parameters evaluated with optical coherence tomography-angiography in children: comparison between preterm and full-term patients, Acta Ophthalmol., 97, e1032, 10.1111/aos.14131
Provis, 2001, Development of the primate retinal vasculature, Prog. Retin. Eye Res., 20, 799, 10.1016/S1350-9462(01)00012-X
Provis, 1998, Ontogeny of the primate fovea: a central issue in retinal development, Prog. Neurobiol., 54, 549, 10.1016/S0301-0082(97)00079-8
Provis, 2013, Adaptation of the central retina for high acuity vision: cones, the fovea and the avascular zone, Prog. Retin. Eye Res., 35, 63, 10.1016/j.preteyeres.2013.01.005
Provis, 2008, The foveal avascular region of developing human retina, Arch. Ophthalmol., 126, 507, 10.1001/archopht.126.4.507
Provis, 1997, Development of the human retinal vasculature: cellular relations and VEGF expression, Exp. Eye Res., 65, 555, 10.1006/exer.1997.0365
Provis, 2000, Astrocytes and blood vessels define the foveal rim during primate retinal development, Invest. Ophthalmol. Vis. Sci., 41, 2827
Rezar-Dreindl, 2021, Retinal vessel architecture in retinopathy of prematurity and healthy controls using swept-source optical coherence tomography angiography, Acta Ophthalmol., 99, e232, 10.1111/aos.14557
Rosen, 2015, A methodological approach for evaluation of foveal immaturity after extremely preterm birth, Ophthalmic Physiol. Opt., 35, 433, 10.1111/opo.12221
Rothman, 2015, Assessment of retinal nerve fiber layer thickness in healthy, full-term neonates, Am. J. Ophthalmol., 159, 803, 10.1016/j.ajo.2015.01.017
Rothman, 2015, Thinner retinal nerve fiber layer in very preterm versus term infants and relationship to brain anatomy and neurodevelopment, Am. J. Ophthalmol., 160, 1296, 10.1016/j.ajo.2015.09.015
Rothman, 2015, Poorer neurodevelopmental outcomes associated with cystoid macular edema identified in preterm infants in the intensive care nursery, Ophthalmology, 122, 610, 10.1016/j.ophtha.2014.09.022
Rothman, 2015, Functional outcomes of young infants with and without macular edema, Retina, 35, 2018, 10.1097/IAE.0000000000000579
Saint-Geniez, 2004, Development and pathology of the hyaloid, choroidal and retinal vasculature, Int. J. Dev. Biol., 48, 1045, 10.1387/ijdb.041895ms
Scharf, 2021, Paracentral acute middle maculopathy and the organization of the retinal capillary plexuses, Prog. Retin. Eye Res., 81, 100884, 10.1016/j.preteyeres.2020.100884
Scott, 2009, Imaging the infant retina with a hand-held spectral-domain optical coherence tomography device, Am. J. Ophthalmol., 147, 364, 10.1016/j.ajo.2008.08.010
Scruggs, 2022, Peripheral OCT assisted by scleral depression in retinopathy of prematurity, Ophthalmol Sci, 2, 10.1016/j.xops.2021.100094
Seely, 2020, Auto-processed retinal vessel shadow view images from bedside optical coherence tomography to evaluate plus disease in retinopathy of prematurity, Transl Vis Sci Technol, 9, 16, 10.1167/tvst.9.9.16
Shen, 2021, Birth weight is a significant predictor of retinal nerve fiber layer thickness at 36 Weeks postmenstrual age in preterm infants, Am. J. Ophthalmol., 222, 41, 10.1016/j.ajo.2020.08.043
Shields, 2004, Optical coherence tomography in children: analysis of 44 eyes with intraocular tumors and simulating conditions, J. Pediatr. Ophthalmol. Strabismus, 41, 338, 10.3928/01913913-20041101-04
Sjostrand, 2020, Structural consequences of arrested foveal development in preterms with persisting signs of immaturity, Eye, 34, 1077, 10.1038/s41433-019-0627-4
Sjostrand, 2017, Arrested foveal development in preterm eyes: thickening of the outer nuclear layer and structural redistribution within the fovea, Invest. Ophthalmol. Vis. Sci., 58, 4948, 10.1167/iovs.17-22333
Smelser, 1973, The fine structure of the retinal transient layer of Chievitz, Invest. Ophthalmol., 12, 504
Song, 2019, Development of a clinical prototype of a miniature hand-held optical coherence tomography probe for prematurity and pediatric ophthalmic imaging, Biomed. Opt Express, 10, 2383, 10.1364/BOE.10.002383
Springer, 2004, Development of the primate area of high acuity. 1. Use of finite element analysis models to identify mechanical variables affecting pit formation, Vis. Neurosci., 21, 53, 10.1017/S0952523804041057
Springer, 2004, Development of the primate area of high acuity. 2. Quantitative morphological changes associated with retinal and pars plana growth, Vis. Neurosci., 21, 775, 10.1017/S0952523804215115
Springer, 2005, Development of the primate area of high acuity, 3: temporal relationships between pit formation, retinal elongation and cone packing, Vis. Neurosci., 22, 171, 10.1017/S095252380522206X
Springer, 2011, Foveal cone density shows a rapid postnatal maturation in the marmoset monkey, Vis. Neurosci., 28, 473, 10.1017/S0952523811000332
Staurenghi, 2014, Proposed lexicon for anatomic landmarks in normal posterior segment spectral-domain optical coherence tomography: the IN•OCT consensus, Ophthalmology, 121, 1572, 10.1016/j.ophtha.2014.02.023
Swanson, 1993, In vivo retinal imaging by optical coherence tomography, Opt Lett., 18, 1864, 10.1364/OL.18.001864
Takagi, 2019, Foveal abnormalities determined by optical coherence tomography angiography in children with history of retinopathy of prematurity, Eye, 33, 1890, 10.1038/s41433-019-0500-5
Tariq, 2011, Association of birth parameters with OCT measured macular and retinal nerve fiber layer thickness, Invest. Ophthalmol. Vis. Sci., 52, 1709, 10.1167/iovs.10-6365
Thomas, 2020, Normal and abnormal foveal development, Br. J. Ophthalmol., 106, 593, 10.1136/bjophthalmol-2020-316348
Trese, 1980, Infantile cystoid maculopathy, Br. J. Ophthalmol., 64, 206, 10.1136/bjo.64.3.206
Vajzovic, 2012, Maturation of the human fovea: correlation of spectral-domain optical coherence tomography findings with histology, Am. J. Ophthalmol., 154, 779, 10.1016/j.ajo.2012.05.004
Vajzovic, 2015, Delay in retinal photoreceptor development in very preterm compared to term infants, Investig. Ophthalmol. Vis. Sci., 56, 908, 10.1167/iovs.14-16021
Viehland, 2019, Ergonomic handheld OCT angiography probe optimized for pediatric and supine imaging, Biomed. Opt Express, 10, 2623, 10.1364/BOE.10.002623
Vinekar, 2011, Understanding clinically undetected macular changes in early retinopathy of prematurity on spectral domain optical coherence tomography, Invest. Ophthalmol. Vis. Sci., 52, 5183, 10.1167/iovs.10-7155
Vinekar, 2016, Monitoring neovascularization in aggressive posterior retinopathy of prematurity using optical coherence tomography angiography, J AAPOS, 20, 271, 10.1016/j.jaapos.2016.01.013
Vinekar, 2015, Macular edema in Asian Indian premature infants with retinopathy of prematurity: Impact on visual acuity and refractive status after 1-year, Indian J. Ophthalmol., 63, 432, 10.4103/0301-4738.159879
Vinekar, 2021, Optical coherence tomography angiography in preterm-born children with retinopathy of prematurity, Graefes Arch. Clin. Exp. Ophthalmol., 259, 2131, 10.1007/s00417-021-05090-7
Vogel, 2018, Foveal development in infants treated with bevacizumab or laser photocoagulation for retinopathy of prematurity, Ophthalmology, 125, 444, 10.1016/j.ophtha.2017.09.020
Vural, 2021, Comparison of foveal optical coherence tomography angiography findings between premature children with ROP and non-premature healthy children, Eye, 35, 1721, 10.1038/s41433-020-01161-x
Wagner-Schuman, 2011, Race- and sex-related differences in retinal thickness and foveal pit morphology, Invest. Ophthalmol. Vis. Sci., 52, 625, 10.1167/iovs.10-5886
Wang, 2019, Understanding the variability of handheld spectral-domain optical coherence tomography measurements in supine infants, PLoS One, 14, 10.1371/journal.pone.0225960
WHO, 2018
Wong, 2020, Regression of cystoid macular edema three weeks after laser for retinopathy of prematurity, Ophthalmic. Surg. Lasers Imaging Retina., 51, 472, 10.3928/23258160-20200804-08
Yang, 2017, Handheld optical coherence tomography angiography, Biomed. Opt Express, 8, 2287, 10.1364/BOE.8.002287
Yanni, 2012, Foveal avascular zone and foveal pit formation after preterm birth, Br. J. Ophthalmol., 96, 961, 10.1136/bjophthalmol-2012-301612
Yuodelis, 1986, A qualitative and quantitative analysis of the human fovea during development, Vis. Res., 26, 847, 10.1016/0042-6989(86)90143-4
Zepeda, 2018, Vitreous bands identified by handheld spectral-domain optical coherence tomography among premature infants, JAMA Ophthalmol, 136, 753, 10.1001/jamaophthalmol.2018.1509
Zhao, 2020, Comparison of OCT angiography in children with a history of intravitreal injection of ranibizumab versus laser photocoagulation for retinopathy of prematurity, Br. J. Ophthalmol., 104, 1556
Zhou, 2020, Quantitative handheld swept-source optical coherence tomography angiography in awake preterm and full-term infants, Transl Vis Sci Technol, 9, 19, 10.1167/tvst.9.13.19
Zouache, 2020, Comparison of the morphology of the foveal pit between african and caucasian populations, Transl Vis Sci Technol, 9, 24, 10.1167/tvst.9.5.24
