Insights into the developing fovea revealed by imaging

Progress in Retinal and Eye Research - Tập 90 - Trang 101067 - 2022
Ye He1,2,3, Xi Chen4, Irena Tsui1,2, Lejla Vajzovic4, Srinivas R. Sadda1,2
1Department of Ophthalmology, University of California – Los Angeles, Los Angeles, CA, USA
2Doheny Eye Institute, Pasadena, CA, USA
3Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, China
4Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC, USA

Tài liệu tham khảo

Akerblom, 2011, Central macular thickness is correlated with gestational age at birth in prematurely born children, Br. J. Ophthalmol., 95, 799, 10.1136/bjo.2010.184747 Akula, 2020, The fovea in retinopathy of prematurity, Invest. Ophthalmol. Vis. Sci., 61, 28, 10.1167/iovs.61.11.28 Akula, 2007, Rod photoreceptor function predicts blood vessel abnormality in retinopathy of prematurity, Invest. Ophthalmol. Vis. Sci., 48, 4351, 10.1167/iovs.07-0204 Alabduljalil, 2019, Demonstration of anatomical development of the human macula within the first 5 years of life using handheld OCT, Int. Ophthalmol., 39, 1533, 10.1007/s10792-018-0966-3 Allingham, 2013, Racial variation in optic nerve head parameters quantified in healthy newborns by handheld spectral domain optical coherence tomography, J. Am. Assoc. Pediatr. Ophthalmol. Strabismus, 17, 501, 10.1016/j.jaapos.2013.06.014 Ancel, 2015, Survival and morbidity of preterm children born at 22 through 34 weeks' gestation in France in 2011: results of the EPIPAGE-2 cohort study, JAMA Pediatr., 169, 230, 10.1001/jamapediatrics.2014.3351 Anwar, 2020, Potential utility of foveal morphology in preterm infants measured using hand-held optical coherence tomography in retinopathy of prematurity screening, Retina, 40, 1592, 10.1097/IAE.0000000000002622 Bach, 1914 Balasubramanian, 2019, Relationship between retinal thickness profiles and visual outcomes in young adults born extremely preterm: the EPICure@19 study, Ophthalmology, 126, 107, 10.1016/j.ophtha.2018.07.030 Balasubramanian, 2019, Visual function and optical coherence tomography angiography features in children born preterm, Retina, 39, 2233, 10.1097/IAE.0000000000002301 Borrelli, 2019, Macular microvascular networks in healthy pediatric subjects, Retina, 39, 1216, 10.1097/IAE.0000000000002123 Borrelli, 2018, OCT angiography and evaluation of the choroid and choroidal vascular disorders, Prog. Retin. Eye Res., 67, 30, 10.1016/j.preteyeres.2018.07.002 Bowl, 2018, OCT angiography in young children with a history of retinopathy of prematurity, Ophthalmol Retina., 2, 972, 10.1016/j.oret.2018.02.004 Bowl, 2016, OCT-based macular structure-function correlation in dependence on birth weight and gestational age-the giessen long-term ROP study, Invest. Ophthalmol. Vis. Sci., 57, Oct235, 10.1167/iovs.15-18843 Bringmann, 2006, Müller cells in the healthy and diseased retina, Prog. Retin. Eye Res., 25, 397, 10.1016/j.preteyeres.2006.05.003 Bringmann, 2018, The primate fovea: structure, function and development, Prog. Retin. Eye Res., 66, 49, 10.1016/j.preteyeres.2018.03.006 Cabrera, 2012, Subfoveal fluid in healthy full-term newborns observed by handheld spectral-domain optical coherence tomography, Am. J. Ophthalmol., 153, 167, 10.1016/j.ajo.2011.06.017 Cabrera, 2013, Macular findings in healthy full-term Hispanic newborns observed by hand-held spectral-domain optical coherence tomography, Ophthalmic. Surg. Lasers Imaging Retina., 44, 448, 10.3928/23258160-20130801-01 Campbell, 2017, Handheld optical coherence tomography angiography and ultra-wide-field optical coherence tomography in retinopathy of prematurity, JAMA Ophthalmol, 135, 977, 10.1001/jamaophthalmol.2017.2481 Campbell, 2017, Detailed vascular anatomy of the human retina by projection-resolved optical coherence tomography angiography, Sci. Rep., 7, 42201, 10.1038/srep42201 Carreira, 2021, Long-term macular vascular density measured by OCT-A in children with retinopathy of prematurity with and without need of laser treatment, Eur. J. Ophthalmol., 31, 3337, 10.1177/1120672120983204 Chavala, 2009, Insights into advanced retinopathy of prematurity using handheld spectral domain optical coherence tomography imaging, Ophthalmology, 116, 2448, 10.1016/j.ophtha.2009.06.003 Chen, 2020, Slow progressive perifoveal vascular formation in an infant with aggressive posterior retinopathy of prematurity, J aapos, 24, 323, 10.1016/j.jaapos.2020.07.007 Chen, 2018, Spectral-domain OCT findings of retinal vascular-avascular junction in infants with retinopathy of prematurity, Ophthalmol Retina., 2, 963, 10.1016/j.oret.2018.02.001 Chen, 2018, Fluorescein angiographic characteristics of macular edema during infancy, JAMA Ophthalmol, 136, 538, 10.1001/jamaophthalmol.2018.0467 Chen, 2020, Differentiating retinal detachment and retinoschisis using handheld optical coherence tomography in stage 4 retinopathy of prematurity, JAMA Ophthalmol, 138, 81, 10.1001/jamaophthalmol.2019.4796 Chen, 2020, Repeatability and reproducibility of axial and lateral measurements on handheld optical coherence tomography systems compared with tabletop system, Transl. Vis. Sci. Technol., 9, 25, 10.1167/tvst.9.11.25 Chen, 2019, Capturing macular vascular development in an infant with retinopathy of prematurity, JAMA Ophthalmol, 137, 1083, 10.1001/jamaophthalmol.2019.2165 Chen, 2020, Foveal microvasculature, refractive errors, optical biometry and their correlations in school-aged children with retinopathy of prematurity after intravitreal antivascular endothelial growth factors or laser photocoagulation, Br. J. Ophthalmol., 104, 691, 10.1136/bjophthalmol-2019-314610 Chen, 2019, Foveal microvascular anomalies on optical coherence tomography angiography and the correlation with foveal thickness and visual acuity in retinopathy of prematurity, Graefes Arch. Clin. Exp. Ophthalmol., 257, 23, 10.1007/s00417-018-4162-y Chievitz, 1887 Cuenca, 2018, Cellular characterization of OCT and outer retinal bands using specific immunohistochemistry markers and clinical implications, Ophthalmology, 125, 407, 10.1016/j.ophtha.2017.09.016 Cuenca, 2020, Interpretation of OCT and OCTA images from a histological approach: clinical and experimental implications, Prog. Retin. Eye Res., 77, 10.1016/j.preteyeres.2019.100828 Curcio, 1990, Human photoreceptor topography, J. Comp. Neurol., 292, 497, 10.1002/cne.902920402 Daruich, 2018, Mechanisms of macular edema: beyond the surface, Prog. Retin. Eye Res., 63, 20, 10.1016/j.preteyeres.2017.10.006 Diaz-Araya, 1992, Evidence of photoreceptor migration during early foveal development: a quantitative analysis of human fetal retinae, Vis. Neurosci., 8, 505, 10.1017/S0952523800005605 Dubis, 2012, Evaluation of normal human foveal development using optical coherence tomography and histologic examination, Arch. Ophthalmol., 130, 1291, 10.1001/archophthalmol.2012.2270 Dubis, 2012, Relationship between the foveal avascular zone and foveal pit morphology, Invest. Ophthalmol. Vis. Sci., 53, 1628, 10.1167/iovs.11-8488 Dubis, 2013, Subclinical macular findings in infants screened for retinopathy of prematurity with spectral-domain optical coherence tomography, Ophthalmology, 120, 1665, 10.1016/j.ophtha.2013.01.028 Engle, 2004, Age terminology during the perinatal period, Pediatrics, 114, 1362, 10.1542/peds.2004-1915 Erol, 2014, Macular findings obtained by spectral domain optical coherence tomography in retinopathy of prematurity, J. Ophthalmol, 2014, 10.1155/2014/468653 Falavarjani, 2017, Optical coherence tomography angiography of the fovea in children born preterm, Retina, 37, 2289, 10.1097/IAE.0000000000001471 Falavarjani, 2018, Optical coherence tomography angiography of the macula in adults with a history of preterm birth, Ophthalmic. Surg. Lasers Imaging Retina., 49, 122, 10.3928/23258160-20180129-06 Fulton, 1996, Photoreceptor function in infants and children with a history of mild retinopathy of prematurity, J. Opt. Soc. Am. Opt Image Sci. Vis., 13, 566, 10.1364/JOSAA.13.000566 Fulton, 2009, The neurovascular retina in retinopathy of prematurity, Prog. Retin. Eye Res., 28, 452, 10.1016/j.preteyeres.2009.06.003 Gariano, 2003, Cellular mechanisms in retinal vascular development, Prog. Retin. Eye Res., 22, 295, 10.1016/S1350-9462(02)00062-9 Gariano, 2005, Retinal angiogenesis in development and disease, Nature, 438, 960, 10.1038/nature04482 Gariano, 1994, Vascular development in primate retina: comparison of laminar plexus formation in monkey and human, Invest. Ophthalmol. Vis. Sci., 35, 3442 Gariano, 2000, Development of the foveal avascular zone, Ophthalmology, 107, 1026, 10.1016/S0161-6420(00)00050-6 Gursoy, 2016, The macular findings on spectral-domain optical coherence tomography in premature infants with or without retinopathy of prematurity, Int. Ophthalmol., 36, 591, 10.1007/s10792-016-0176-9 Hammer, 2008, Foveal fine structure in retinopathy of prematurity: an adaptive optics Fourier domain optical coherence tomography study, Invest. Ophthalmol. Vis. Sci., 49, 2061, 10.1167/iovs.07-1228 Hansen, 2017, The neural retina in retinopathy of prematurity, Prog. Retin. Eye Res., 56, 32, 10.1016/j.preteyeres.2016.09.004 He, 2021, Early postnatal oxygen exposure predicts choroidal thinning in neonates, Invest. Ophthalmol. Vis. Sci., 62, 23, 10.1167/iovs.62.9.23 Hee, 1995, Optical coherence tomography of the human retina, Arch. Ophthalmol., 113, 325, 10.1001/archopht.1995.01100030081025 Hendrickson, 1992, A morphological comparison of foveal development in man and monkey, Eye, 6, 136, 10.1038/eye.1992.29 Hendrickson, 2016, Development of retinal layers in prenatal human retina, Am. J. Ophthalmol., 161, 29, 10.1016/j.ajo.2015.09.023 Hendrickson, 2006, Development of the human retina in the absence of ganglion cells, Exp. Eye Res., 83, 920, 10.1016/j.exer.2006.04.017 Hendrickson, 2012, Histologic development of the human fovea from midgestation to maturity, Am. J. Ophthalmol., 154, 767, 10.1016/j.ajo.2012.05.007 Hendrickson, 2019, Development of cone photoreceptors and their synapses in the human and monkey fovea, J. Comp. Neurol., 527, 38, 10.1002/cne.24170 Hendrickson, 1994, Primate foveal development: a microcosm of current questions in neurobiology, Invest. Ophthalmol. Vis. Sci., 35, 3129 Hendrickson, 1984, The morphological development of the human fovea, Ophthalmology, 91, 603, 10.1016/S0161-6420(84)34247-6 Henkind, 1975, Development of macular vessels in monkey and cat, Br. J. Ophthalmol., 59, 703, 10.1136/bjo.59.12.703 Hollenberg, 1973, Human retinal development: ultrastructure of the outer retina, Am. J. Anat., 137, 357, 10.1002/aja.1001370402 Hsu, 2018, Visualizing macular microvasculature anomalies in 2 infants with treated retinopathy of prematurity, JAMA Ophthalmol, 136, 1422, 10.1001/jamaophthalmol.2018.3926 Hsu, 2019, Imaging infant retinal vasculature with OCT angiography, Ophthalmol Retina., 3, 95, 10.1016/j.oret.2018.06.017 Hsu, 2019, Assessment of macular microvasculature in healthy eyes of infants and children using OCT angiography, Ophthalmology, 126, 1703, 10.1016/j.ophtha.2019.06.028 Huang, 1991, Optical coherence tomography, Science, 254, 1178, 10.1126/science.1957169 Hughes, 2000, Vascularization of the human fetal retina: roles of vasculogenesis and angiogenesis, Invest. Ophthalmol. Vis. Sci., 41, 1217 Jayaraman, 2012, High-sweep-rate 1310 nm MEMS-VCSEL with 150 nm continuous tuning range, Electron. Lett., 48, 867, 10.1049/el.2012.1552 John, 2012 Joshi, 2006, Posterior hyaloid contracture in pediatric vitreoretinopathies, Retina, 26, S38, 10.1097/01.iae.0000244287.63757.5a Joshi, 2006, Optical coherence tomography findings in stage 4A retinopathy of prematurity: a theory for visual variability, Ophthalmology, 113, 657, 10.1016/j.ophtha.2006.01.007 Kadomoto, 2021, Human foveal cone and müller cells examined by adaptive optics optical coherence tomography, Transl Vis Sci Technol, 10, 17, 10.1167/tvst.10.11.17 Kothari, 2020, Arm-mounted optical coherence tomography angiography in extremely low birth weight neonates with retinopathy of prematurity, Am J Ophthalmol Case Rep, 18, 100624, 10.1016/j.ajoc.2020.100624 Lee, 2011, Macular features from spectral-domain optical coherence tomography as an adjunct to indirect ophthalmoscopy in retinopathy of prematurity, Retina, 31, 1470, 10.1097/IAE.0b013e31821dfa6d Lee, 2015, In vivo foveal development using optical coherence tomography, Invest. Ophthalmol. Vis. Sci., 56, 4537, 10.1167/iovs.15-16542 Lepore, 2014, Intravitreal bevacizumab versus laser treatment in type 1 retinopathy of prematurity: report on fluorescein angiographic findings, Ophthalmology, 121, 2212, 10.1016/j.ophtha.2014.05.015 Liang, 2021, Foveal structure, function and microvascular morphology in school-age children with laser-treated retinopathy of prematurity, Eye, 35, 1605, 10.1038/s41433-020-01127-z Lujan, 2015, Directional optical coherence tomography provides accurate outer nuclear layer and henle fiber layer measurements, Retina, 35, 1511, 10.1097/IAE.0000000000000527 Maldonado, 2011, Reversible retinal edema in an infant with neonatal hemochromatosis and liver failure, J AAPOS, 15, 91, 10.1016/j.jaapos.2010.11.016 Maldonado, 2010, Optimizing hand-held spectral domain optical coherence tomography imaging for neonates, infants, and children, Invest. Ophthalmol. Vis. Sci., 51, 2678, 10.1167/iovs.09-4403 Maldonado, 2012, Spectral-domain optical coherence tomographic assessment of severity of cystoid macular edema in retinopathy of prematurity, Arch. Ophthalmol., 130, 569, 10.1001/archopthalmol.2011.1846 Maldonado, 2011, Dynamics of human foveal development after premature birth, Ophthalmology, 118, 2315, 10.1016/j.ophtha.2011.05.028 Mangalesh, 2019, Three-dimensional pattern of extraretinal neovascular development in retinopathy of prematurity, Graefes Arch. Clin. Exp. Ophthalmol., 257, 677, 10.1007/s00417-019-04274-6 Mangalesh, 2021, Macular OCT characteristics at 36 Weeks' postmenstrual age in infants examined for retinopathy of prematurity, Ophthalmol Retina., 5, 580, 10.1016/j.oret.2020.09.004 Mangalesh, 2021, Preterm infant stress during handheld optical coherence tomography vs binocular indirect ophthalmoscopy examination for retinopathy of prematurity, JAMA Ophthalmol, 139, 567, 10.1001/jamaophthalmol.2021.0377 Mangalesh, 2020, Morphological characteristics of early- versus late-onset macular edema in preterm infants, J AAPOS, 24, 303, 10.1016/j.jaapos.2020.06.006 Mann, 1964 Mann, 1928 Michalak, 2021, Systemic factors associated with a thinner choroid in preterm infants, Ophthalmol. Sci., 1, 10.1016/j.xops.2021.100032 Miki, 2019, The size of the foveal avascular zone is associated with foveal thickness and structure in premature children, J Ophthalmol, 2019, 10.1155/2019/8340729 Mintz-Hittner, 1999, A small foveal avascular zone may be an historic mark of prematurity, Ophthalmology, 106, 1409, 10.1016/S0161-6420(99)00732-0 Moreno, 2013, Choroid development and feasibility of choroidal imaging in the preterm and term infants utilizing SD-OCT, Invest. Ophthalmol. Vis. Sci., 54, 4140, 10.1167/iovs.12-11471 Moshiri, 2019, Handheld swept-source optical coherence tomography with angiography in awake premature neonates, Quant. Imag. Med. Surg., 9, 1495, 10.21037/qims.2019.09.01 Ni, 2021, High-speed and widefield handheld swept-source OCT angiography with a VCSEL light source, Biomed. Opt Express, 12, 3553, 10.1364/BOE.425411 Nonobe, 2019, Optical coherence tomography angiography of the foveal avascular zone in children with a history of treatment-requiring retinopathy of prematurity, Retina, 39, 111, 10.1097/IAE.0000000000001937 O'Sullivan, 2021, Foveal differentiation and inner retinal displacement are arrested in extremely premature infants, Invest. Ophthalmol. Vis. Sci., 62, 25, 10.1167/iovs.62.2.25 Otani, 2011, Improved visualization of Henle fiber layer by changing the measurement beam angle on optical coherence tomography, Retina, 31, 497, 10.1097/IAE.0b013e3181ed8dae Owen, 2011, Retinal arteriolar tortuosity and cardiovascular risk factors in a multi-ethnic population study of 10-year-old children; the Child Heart and Health Study in England (CHASE), Arterioscler. Thromb. Vasc. Biol., 31, 1933, 10.1161/ATVBAHA.111.225219 Patel, 2016, Optic nerve head development in healthy infants and children using handheld spectral-domain optical coherence tomography, Ophthalmology, 123, 2147, 10.1016/j.ophtha.2016.06.057 Patel, 2021, Depth-resolved visualization of perifoveal retinal vasculature in preterm infants using handheld optical coherence tomography angiography, Transl Vis Sci Technol, 10, 10, 10.1167/tvst.10.9.10 Periti, 2019, Microvascular parameters evaluated with optical coherence tomography-angiography in children: comparison between preterm and full-term patients, Acta Ophthalmol., 97, e1032, 10.1111/aos.14131 Provis, 2001, Development of the primate retinal vasculature, Prog. Retin. Eye Res., 20, 799, 10.1016/S1350-9462(01)00012-X Provis, 1998, Ontogeny of the primate fovea: a central issue in retinal development, Prog. Neurobiol., 54, 549, 10.1016/S0301-0082(97)00079-8 Provis, 2013, Adaptation of the central retina for high acuity vision: cones, the fovea and the avascular zone, Prog. Retin. Eye Res., 35, 63, 10.1016/j.preteyeres.2013.01.005 Provis, 2008, The foveal avascular region of developing human retina, Arch. Ophthalmol., 126, 507, 10.1001/archopht.126.4.507 Provis, 1997, Development of the human retinal vasculature: cellular relations and VEGF expression, Exp. Eye Res., 65, 555, 10.1006/exer.1997.0365 Provis, 2000, Astrocytes and blood vessels define the foveal rim during primate retinal development, Invest. Ophthalmol. Vis. Sci., 41, 2827 Rezar-Dreindl, 2021, Retinal vessel architecture in retinopathy of prematurity and healthy controls using swept-source optical coherence tomography angiography, Acta Ophthalmol., 99, e232, 10.1111/aos.14557 Rosen, 2015, A methodological approach for evaluation of foveal immaturity after extremely preterm birth, Ophthalmic Physiol. Opt., 35, 433, 10.1111/opo.12221 Rothman, 2015, Assessment of retinal nerve fiber layer thickness in healthy, full-term neonates, Am. J. Ophthalmol., 159, 803, 10.1016/j.ajo.2015.01.017 Rothman, 2015, Thinner retinal nerve fiber layer in very preterm versus term infants and relationship to brain anatomy and neurodevelopment, Am. J. Ophthalmol., 160, 1296, 10.1016/j.ajo.2015.09.015 Rothman, 2015, Poorer neurodevelopmental outcomes associated with cystoid macular edema identified in preterm infants in the intensive care nursery, Ophthalmology, 122, 610, 10.1016/j.ophtha.2014.09.022 Rothman, 2015, Functional outcomes of young infants with and without macular edema, Retina, 35, 2018, 10.1097/IAE.0000000000000579 Saint-Geniez, 2004, Development and pathology of the hyaloid, choroidal and retinal vasculature, Int. J. Dev. Biol., 48, 1045, 10.1387/ijdb.041895ms Scharf, 2021, Paracentral acute middle maculopathy and the organization of the retinal capillary plexuses, Prog. Retin. Eye Res., 81, 100884, 10.1016/j.preteyeres.2020.100884 Scott, 2009, Imaging the infant retina with a hand-held spectral-domain optical coherence tomography device, Am. J. Ophthalmol., 147, 364, 10.1016/j.ajo.2008.08.010 Scruggs, 2022, Peripheral OCT assisted by scleral depression in retinopathy of prematurity, Ophthalmol Sci, 2, 10.1016/j.xops.2021.100094 Seely, 2020, Auto-processed retinal vessel shadow view images from bedside optical coherence tomography to evaluate plus disease in retinopathy of prematurity, Transl Vis Sci Technol, 9, 16, 10.1167/tvst.9.9.16 Shen, 2021, Birth weight is a significant predictor of retinal nerve fiber layer thickness at 36 Weeks postmenstrual age in preterm infants, Am. J. Ophthalmol., 222, 41, 10.1016/j.ajo.2020.08.043 Shields, 2004, Optical coherence tomography in children: analysis of 44 eyes with intraocular tumors and simulating conditions, J. Pediatr. Ophthalmol. Strabismus, 41, 338, 10.3928/01913913-20041101-04 Sjostrand, 2020, Structural consequences of arrested foveal development in preterms with persisting signs of immaturity, Eye, 34, 1077, 10.1038/s41433-019-0627-4 Sjostrand, 2017, Arrested foveal development in preterm eyes: thickening of the outer nuclear layer and structural redistribution within the fovea, Invest. Ophthalmol. Vis. Sci., 58, 4948, 10.1167/iovs.17-22333 Smelser, 1973, The fine structure of the retinal transient layer of Chievitz, Invest. Ophthalmol., 12, 504 Song, 2019, Development of a clinical prototype of a miniature hand-held optical coherence tomography probe for prematurity and pediatric ophthalmic imaging, Biomed. Opt Express, 10, 2383, 10.1364/BOE.10.002383 Springer, 2004, Development of the primate area of high acuity. 1. Use of finite element analysis models to identify mechanical variables affecting pit formation, Vis. Neurosci., 21, 53, 10.1017/S0952523804041057 Springer, 2004, Development of the primate area of high acuity. 2. Quantitative morphological changes associated with retinal and pars plana growth, Vis. Neurosci., 21, 775, 10.1017/S0952523804215115 Springer, 2005, Development of the primate area of high acuity, 3: temporal relationships between pit formation, retinal elongation and cone packing, Vis. Neurosci., 22, 171, 10.1017/S095252380522206X Springer, 2011, Foveal cone density shows a rapid postnatal maturation in the marmoset monkey, Vis. Neurosci., 28, 473, 10.1017/S0952523811000332 Staurenghi, 2014, Proposed lexicon for anatomic landmarks in normal posterior segment spectral-domain optical coherence tomography: the IN•OCT consensus, Ophthalmology, 121, 1572, 10.1016/j.ophtha.2014.02.023 Swanson, 1993, In vivo retinal imaging by optical coherence tomography, Opt Lett., 18, 1864, 10.1364/OL.18.001864 Takagi, 2019, Foveal abnormalities determined by optical coherence tomography angiography in children with history of retinopathy of prematurity, Eye, 33, 1890, 10.1038/s41433-019-0500-5 Tariq, 2011, Association of birth parameters with OCT measured macular and retinal nerve fiber layer thickness, Invest. Ophthalmol. Vis. Sci., 52, 1709, 10.1167/iovs.10-6365 Thomas, 2020, Normal and abnormal foveal development, Br. J. Ophthalmol., 106, 593, 10.1136/bjophthalmol-2020-316348 Trese, 1980, Infantile cystoid maculopathy, Br. J. Ophthalmol., 64, 206, 10.1136/bjo.64.3.206 Vajzovic, 2012, Maturation of the human fovea: correlation of spectral-domain optical coherence tomography findings with histology, Am. J. Ophthalmol., 154, 779, 10.1016/j.ajo.2012.05.004 Vajzovic, 2015, Delay in retinal photoreceptor development in very preterm compared to term infants, Investig. Ophthalmol. Vis. Sci., 56, 908, 10.1167/iovs.14-16021 Viehland, 2019, Ergonomic handheld OCT angiography probe optimized for pediatric and supine imaging, Biomed. Opt Express, 10, 2623, 10.1364/BOE.10.002623 Vinekar, 2011, Understanding clinically undetected macular changes in early retinopathy of prematurity on spectral domain optical coherence tomography, Invest. Ophthalmol. Vis. Sci., 52, 5183, 10.1167/iovs.10-7155 Vinekar, 2016, Monitoring neovascularization in aggressive posterior retinopathy of prematurity using optical coherence tomography angiography, J AAPOS, 20, 271, 10.1016/j.jaapos.2016.01.013 Vinekar, 2015, Macular edema in Asian Indian premature infants with retinopathy of prematurity: Impact on visual acuity and refractive status after 1-year, Indian J. Ophthalmol., 63, 432, 10.4103/0301-4738.159879 Vinekar, 2021, Optical coherence tomography angiography in preterm-born children with retinopathy of prematurity, Graefes Arch. Clin. Exp. Ophthalmol., 259, 2131, 10.1007/s00417-021-05090-7 Vogel, 2018, Foveal development in infants treated with bevacizumab or laser photocoagulation for retinopathy of prematurity, Ophthalmology, 125, 444, 10.1016/j.ophtha.2017.09.020 Vural, 2021, Comparison of foveal optical coherence tomography angiography findings between premature children with ROP and non-premature healthy children, Eye, 35, 1721, 10.1038/s41433-020-01161-x Wagner-Schuman, 2011, Race- and sex-related differences in retinal thickness and foveal pit morphology, Invest. Ophthalmol. Vis. Sci., 52, 625, 10.1167/iovs.10-5886 Wang, 2019, Understanding the variability of handheld spectral-domain optical coherence tomography measurements in supine infants, PLoS One, 14, 10.1371/journal.pone.0225960 WHO, 2018 Wong, 2020, Regression of cystoid macular edema three weeks after laser for retinopathy of prematurity, Ophthalmic. Surg. Lasers Imaging Retina., 51, 472, 10.3928/23258160-20200804-08 Yang, 2017, Handheld optical coherence tomography angiography, Biomed. Opt Express, 8, 2287, 10.1364/BOE.8.002287 Yanni, 2012, Foveal avascular zone and foveal pit formation after preterm birth, Br. J. Ophthalmol., 96, 961, 10.1136/bjophthalmol-2012-301612 Yuodelis, 1986, A qualitative and quantitative analysis of the human fovea during development, Vis. Res., 26, 847, 10.1016/0042-6989(86)90143-4 Zepeda, 2018, Vitreous bands identified by handheld spectral-domain optical coherence tomography among premature infants, JAMA Ophthalmol, 136, 753, 10.1001/jamaophthalmol.2018.1509 Zhao, 2020, Comparison of OCT angiography in children with a history of intravitreal injection of ranibizumab versus laser photocoagulation for retinopathy of prematurity, Br. J. Ophthalmol., 104, 1556 Zhou, 2020, Quantitative handheld swept-source optical coherence tomography angiography in awake preterm and full-term infants, Transl Vis Sci Technol, 9, 19, 10.1167/tvst.9.13.19 Zouache, 2020, Comparison of the morphology of the foveal pit between african and caucasian populations, Transl Vis Sci Technol, 9, 24, 10.1167/tvst.9.5.24