Insights into the deformation kinematics of Xieliupo landslide, Zhouqu, China, through remote sensing and geomorphological observations

Landslides - 2023
Yi Zhang1, Xiaojun Su1, Xingmin Meng1, Yuanxi Li1, Tianjun Qi1, Wangcai Liu1, Xiaoxue Meng1
1Technology & Innovation Centre for Environmental Geology and Geohazards Prevention, School of Earth Sciences, Lanzhou University, Lanzhou, 730000, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Antonielli M, Rocca B, Dei C (2019) A-DInSAR performance for updating landslide inventory in mountain areas: an example from Lombardy region (Italy). Geosciences 9. https://doi.org/10.3390/geosciences9090364

Bai S, Jian W, Zhang Z, Chen C (2012) Combined landslide susceptibility mapping after Wenchuan earthquake at the Zhouqu segment in the Bailongjiang Basin, China. CATENA 99:18–25

Bai S, Cheng C, Wang J, Thiebes B, Zhang Z (2013) Regional scale rainfall- and earthquake-triggered landslide susceptibility assessment in Wudu County, China. J Mt Sci 10:743–753

Berardino P, Costantini M, Franceschetti G, Iodice A, Pietranera L, Rizzo V (2003) Use of differential sar interferometry in monitoring and modelling large slope instability at Maratea (Basilicata, Italy). Eng Geol 68:31–51

Berardino P, Fornaro G, Lanari R, Sansosti E (2002) A new algorithm for surface deformation monitoring based on small baseline differential sar interferograms. IEEE Trans Geosci Remote Sens 40:2375–2383. https://doi.org/10.1109/TGRS.2002.803792

Casagli N, Frodella W, Morelli S, Tofani V, Ciampalini A, Intrieri E, Raspini F, Rossi G, Tanteri L, Lu P (2017) Spaceborne, UAV and ground-based remote sensing techniques for landslide mapping, monitoring and early warning. Geoenvironmental Disasters 4:9. https://doi.org/10.1186/s40677-017-0073-1

Catani F (2020) Landslide detection by deep learning of non-nadiral and crowdsourced optical images. Landslides 18:1025–1044. https://doi.org/10.1007/s10346-020-01513-4

Chen G, Meng X, Qiao L, Zhang Y, Wang S (2017) Response of a loess landslide to rainfall: observations from a field artificial rainfall experiment in Bailong River Basin, China. Landslides 15:895–911. https://doi.org/10.1007/s10346-017-0924-6

Chen Y, Lin Y, Yen H, Chang N, Lin H, Yang K, Chen C, Wang L, Cheng H, Wu H and Han J (2022) Integrating InSAR information and spatial-temporal factors in machine learning analysis for landslide prediction – a case study for provincial highway 18 area in Taiwan. XLIII-B3-2022: 1091-1096. 10.5194/isprs-archives-XLIII-B3-2022-1091-2022

Costantini M (1998) A novel phase unwrapping method based on network programming. IEEE Trans Geosci Remote Sens 36:813–821. https://doi.org/10.1109/36.673674

Crippa C, Valbuzzi E, Frattini P, Crosta GB, Spreafico MC, Agliardi F (2021) Semi-automated regional classification of the style of activity of slow rock-slope deformations using PS InSAR and SqueeSAR velocity data. Landslides 18:2445–2463. https://doi.org/10.1007/s10346-021-01654-0

Crosetto M, Monserrat O, Cuevas-González M, Devanthéry N, Crippa B (2016) Persistent scatterer interferometry: a review. ISPRS J Photogramm Remote Sens 115:78–89. https://doi.org/10.1016/j.isprsjprs.2015.10.011

Cui P, Zhou GGD, Zhu XH, Zhang JQ (2013) Scale amplification of natural debris flows caused by cascading landslide dam failures. Geomorphology (amsterdam, Netherlands) 182:173–189. https://doi.org/10.1016/j.geomorph.2012.11.009

Dong J, Zhang L, Liao M and Gong J (2019) Improved correction of seasonal tropospheric delay in InSAR observations for landslide deformation monitoring. Remote Sens Environ 233. https://doi.org/10.1016/j.rse.2019.111370

Fan X, Scaringi G, Korup O, West AJ, Westen CJ, Tanyas H, Hovius N, Hales TC, Jibson RW, Allstadt KE, Zhang L, Evans SG, Xu C, Li G, Pei X, Xu Q, Huang R (2019a) Earthquake-induced chains of geologic hazards: patterns, mechanisms, and impacts. Rev Geophys 57:421–503. https://doi.org/10.1029/2018rg000626

Fan X, Scaringi G, Xu Q, Zhan W, Dai L, Li Y, Pei X, Yang Q, Huang R (2018) Coseismic landslides triggered by the 8th August 2017 ms 7.0 Jiuzhaigou earthquake (Sichuan, China): factors controlling their spatial distribution and implications for the seismogenic blind fault identification. Landslides 15:967–983. https://doi.org/10.1007/s10346-018-0960-x

Fan X, Xu Q, Alonso-Rodriguez A, Subramanian SS, Li W, Zheng G, Dong X, Huang R (2019b) Successive landsliding and damming of the Jinsha River in Eastern Tibet, China: prime investigation, early warning, and emergency response. Landslides 16:1003–1020. https://doi.org/10.1007/s10346-019-01159-x

Fiorucci F, Cardinali M, Carlà R, Rossi M, Mondini AC, Santurri L, Ardizzone F, Guzzetti F (2011) Seasonal landslide mapping and estimation of landslide mobilization rates using aerial and satellite images. Geomorphology (amsterdam, Netherlands) 129:59–70. https://doi.org/10.1016/j.geomorph.2011.01.013

Fiorucci F, Giordan D, Santangelo M, Dutto F, Rossi M, Guzzetti F (2018) Criteria for the optimal selection of remote sensing optical images to map event landslides. Nat Hazard Earth Ssyst Scie18:405–417. https://doi.org/10.5194/nhess-18-405-2018

Gabriel AK, Goldstein RM, Zebker HA (1989) Mapping small elevation changes over large areas - differential radar interferometry. Journal of Geophysical Research Solid Earth and Planets 94:9183–9191. https://doi.org/10.1029/JB094iB07p09183

Giordan D, Manconi A, Tannant DD. Allasia P (2015) UAV: low-cost remote sensing for high-resolution investigation of landslides. 2015 IEEE Int Geosci Remote Sens Symp (IGARSS) pp 5344–5347

Goldstein RM, Werner CL (1998) Radar interferogram filtering for geophysical applications. Geophys Res Lett 25:4035–4038. https://doi.org/10.1029/1998gl900033

Gorum T, Fan X, van Westen CJ, Huang R, Xu Q, Tang C, Wang G (2011) Distribution pattern of earthquake-induced landslides triggered by the 12 May 2008 Wenchuan earthquake. Geomorphology 133:152–167. https://doi.org/10.1016/j.geomorph.2010.12.030

Guo C, Zhang Y, Li X, Ren S, Yang Z, Wu R, Jin J (2019) Reactivation of giant Jiangdingya ancient landslide in Zhouqu county, Gansu province, China. Landslides 17:179–190. https://doi.org/10.1007/s10346-019-01266-9

Guo F, Meng X, Qi T, Dijkstra T, Thorkildsen JK, Yue D, Chen G, Zhang Y, Dou X, Shi P-i (2022) Rapid onset hazards, fault-controlled landslides and multi-method emergency decision-making. J Mt Sci 19:1357–1369. https://doi.org/10.1007/s11629-021-6941-x

Guo R, Li S, Yn C, Li X, Yuan L (2020) Identification and monitoring landslides in longitudinal range-gorge region with InSAR fusion integrated visibility analysis. Landslides 18:551–568. https://doi.org/10.1007/s10346-020-01475-7

Guzzetti F, Mondini AC, Cardinali M, Fiorucci F, Santangelo M, Chang K-T (2012) Landslide inventory maps: new tools for an old problem. Earth Sci Rev 112:42–66. https://doi.org/10.1016/j.earscirev.2012.02.001

Guzzetti F, Reichenbach P, Cardinali M, Galli M, Ardizzone F (2005) Probabilistic landslide hazard assessment at the basin scale. Geomorphology (amsterdam, Netherlands) 72:272–299. https://doi.org/10.1016/j.geomorph.2005.06.002

Hooper A (2008) A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches. Geophys Res Lett 35:96–106

Hooper A, Zebker H, Segall P, Kampes B (2004). A New Method for Measuring Deformation on Volcanoes and Other Natural Terrains Using InSAR Persistent Scatterers. https://doi.org/10.1029/2004GL021737

Hu S, Qiu H, Wang N, Wang X, Ma S, Yang D, Wei N, Liu Z, Shen Y, Cao M, Song Z (2022) Movement process, geomorphological changes, and influencing factors of a reactivated loess landslide on the right bank of the middle of the yellow river, china. Landslides 19:1265–1295. https://doi.org/10.1007/s10346-022-01856-0

Huang R, Li W (2011) Formation, distribution and risk control of landslides in china. J Rock Mechan Geotech Eng 3:97–116. https://doi.org/10.3724/SP.J.1235.2011.00097

Huang X, Yang W, Zhang C, Shen J, Liu T (2013) Deformation characteristics and formation mechanism of xieliupo landslide in zhouqu (in chinese). J Geomech 19:178–187

Huggel C, Clague JJ, Korup O (2012) Is climate change responsible for changing landslide activity in high mountains? Earth Surf Proc Land 37:77–91. https://doi.org/10.1002/esp.2223

Ilinca V, Sandric I, Chitu Z, Irimia R and Gheuca I (2022) UAV applications to assess short-term dynamics of slow-moving landslides under dense forest cover. Landslides 19. https://doi.org/10.1007/s10346-022-01877-9

Jiang S, Wen B, Zhao C, Li R (2013) Creep mechanism analysis of Xieliupo landslide in Zhouqu county of Gansu province (in Chinese). The Chinese Journal of Geological Hazard and Control 24:1–7. https://doi.org/10.16031/j.cnki.issn.1003-8035.2013.03.013

Jiang S, Wen B, Zhao C, Li R, Li Z (2016) Kinematics of a giant slow-moving landslide in Northwest China: constraints from high resolution remote sensing imagery and GPS monitoring. J Asian Earth Sci 123:34–46. https://doi.org/10.1016/j.jseaes.2016.03.019

Kang Y, Zhao C, Zhang Q, Lu Z, Li B (2017) Application of InSAR techniques to an analysis of the Guanling landslide. Remote Sens 9:1046

Kumar A, Asthana AKL, Priyanka RS, Jayangondaperumal R, Gupta AK, Bhakuni SS (2017) Assessment of landslide hazards induced by extreme rainfall event in Jammu and Kashmir Himalaya, Northwest India. Geomorphology 284:72–87. https://doi.org/10.1016/j.geomorph.2017.01.003

Kurtz C, Stumpf A, Malet J-P, Gançarski P, Puissant A, Passat N (2014) Hierarchical extraction of landslides from multiresolution remotely sensed optical images. ISPRS J Photogramm Remote Sens 87:122–136. https://doi.org/10.1016/j.isprsjprs.2013.11.003

Lacroix P, Bièvre G, Pathier E, Kniess U, Jongmans D (2018) Use of sentinel-2 images for the detection of precursory motions before landslide failures. Remote Sens Environ 215:507–516. https://doi.org/10.1016/j.rse.2018.03.042

Leprince S, Barbot S, Ayoub F, Avouac JP (2007) Automatic and precise orthorectification, coregistration, and subpixel correlation of satellite images, application to ground deformation measurements. IEEE Trans Geosci Remote Sens 45:1529–1558. https://doi.org/10.1109/TGRS.2006.888937

Lin Q, Wang Y (2018) Spatial and temporal analysis of a fatal landslide inventory in China from 1950 to 2016. Landslides 15:2357–2372. https://doi.org/10.1007/s10346-018-1037-6

Liu X, Zhao C, Zhang Q, Lu Z and Li Z (2020) Deformation of the baige landslide, Tibet, China, revealed through the integration of cross-platform alos/palsar-1 and alos/palsar-2 sar observations. Geophysical Research Letters 47:e2019GL086142. https://doi.org/10.1029/2019GL086142

Lucieer A, Jong SMd, Turner D (2013) Mapping landslide displacements using structure from motion (sfm) and image correlation of multi-temporal UAV photography. Progress in Physical Geography: Earth and Environment 38:97–116. https://doi.org/10.1177/0309133313515293

Ma S, Qiu H, Hu S, Yang D, Liu Z (2020) Characteristics and geomorphology change detection analysis of the jiangdingya landslide on July 12, 2018, China. Landslides 18:383–396. https://doi.org/10.1007/s10346-020-01530-3

Mateos R, Azañón J, Roldán F, Notti D, Pérez-Peña J, Galve J, Pérez J, Colomo C, Gomez J, Monserrat O, Devantèry N, Lamas F and Chacón F (2016) The combined use of PSInSAR and UAV photogrammetry techniques for the analysis of the kinematics of a coastal landslide affecting an urban area (SE Spain). Landslides 14. https://doi.org/10.1007/s10346-016-0723-5

Meng Q, Li W, Raspini F, Xu Q, Peng Y, Ju Y, Zheng Y, Casagli N (2020) Time-series analysis of the evolution of large-scale loess landslides using InSAR and UAV photogrammetry techniques: a case study in Hongheyan, Gansu province, Northwest China. Landslides 18:251–265. https://doi.org/10.1007/s10346-020-01490-8

Meng X, Chen G, Guo P, Xiong M, Janus W (2013) Research of landsldies and debris flows in bailong river basin: progress and prospect. Mar Geol Q Geol 33:1–15

Nappo N, Mavrouli O, Nex F, van Westen C, Gambillara R and Michetti AM (2021) Use of UAV-based photogrammetry products for semi-automatic detection and classification of asphalt road damage in landslide-affected areas. Eng Geol 294:106363. https://doi.org/10.1016/j.enggeo.2021.106363

Necsoiu M, Leprince S, Hooper DM, Dinwiddie CL, McGinnis RN, Walter GR (2009) Monitoring migration rates of an active subarctic dune field using optical imagery. Remote Sens Environ 113:2441–2447. https://doi.org/10.1016/j.rse.2009.07.004

Novellino A, Cesarano M, Cappelletti P, Di Martire D, Di Napoli M, Ramondini M, Sowter A and Calcaterra D (2021) Slow-moving landslide risk assessment combining machine learning and InSAR techniques. CATENA 203:105317. https://doi.org/10.1016/j.catena.2021.105317

Peduto D, Ferlisi S, Nicodemo G, Reale D, Pisciotta G, Gullà G (2017) Empirical fragility and vulnerability curves for buildings exposed to slow-moving landslides at medium and large scales. Landslides 14:1993–2007. https://doi.org/10.1007/s10346-017-0826-7

Peduto D, Nicodemo G, Ferlisi S, Reale D, Fornaro G, Aceto L, Borrelli L and Gullà G (2022) Integration of DInSAR and multi-source data for the multi-scale management of built-up areas exposed to slow-moving landslide risk. IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium, pp 4939–4942

Pike RJ (1988) The geometric signature: quantifying landslide-terrain types from digital elevation models. Math Geol 20:491–511. https://doi.org/10.1007/BF00890333

Qi T, Meng X, Qing F, Zhao Y, Shi W, Chen G, Zhang Y, Li Y, Yue D, Su X, Guo F, Zeng R and Dijkstra T (2021) Distribution and characteristics of large landslides in a fault zone: a case study of the NE Qinghai-Tibet Plateau. Geomorphology 379:107592. https://doi.org/10.1016/j.geomorph.2021.107592

Schäbitz M, Janssen C, Wenk HR, Wirth R, Schuck B, Wetzel HU, Meng X, Dresen G (2018) Microstructures in landslides in Northwest China–implications for creeping displacements. J Struct Geol 106:70–85. https://doi.org/10.1016/j.jsg.2017.11.009

Schl R, ouml, gel, eacute, Doubre c, Malet J-P, Fr, eacute, eacute and Masson r, (2015) Landslide deformation monitoring with alos/palsar imagery: a D-InSAR geomorphological interpretation method. Geomorphology 231:314–330

Schlögel R, Doubre C, Malet JP, Masson F (2015) Landslide deformation monitoring with ALOS/PALSAR imagery: a D-InSAR geomorphological interpretation method. Geomorphology 231:314–330

Shao C, Li Y, Lan H, Li P, Zhou R, Ding H, Yan Z, Dong S, Yan L, Deng T (2019) The role of active faults and sliding mechanism analysis of the 2017 Maoxian postseismic landslide in Sichuan, China. Bull Eng Geol Env 78:5635–5651. https://doi.org/10.1007/s10064-019-01480-8

Shen J, Yang W, Liu T, Huang X, Zheng W, Wang G, Yu L (2014a) Micro-morphology of Quarze in the Bailong River fault gouge, West Qinling, China, and its chronological significance (in Chinese). Bulletin of Mineralogy, Petrology and Geochemistry 33:271–278

Shen J, Yang W, Liu T, Huang X, Zheng W, Yu L, Wang G (2014b) Dating fault activity based on surface texture of quartz grains from the bailong river fault. Acta Geologica Sinica - English Edition 88:1131–1144. https://doi.org/10.1111/1755-6724.12278

Singleton A, Li Z, Hoey T, Muller JP (2014) Evaluating sub-pixel offset techniques as an alternative to D-InSAR for monitoring episodic landslide movements in vegetated terrain. Remote Sens Environ 147:133–144. https://doi.org/10.1016/j.rse.2014.03.003

Su X, Zhang Y, Meng X, Yue D, Ma J, Guo F, Zhou Z, Rehman MU, Khalid Z, Chen G, Zeng R, Zhao F (2021) Landslide mapping and analysis along the China-Pakistan karakoram highway based on SBAS-InSAR detection in 2017. J Mt Sci 18:2540–2564. https://doi.org/10.1007/s11629-021-6686-6

Su X, Zhang Y, Meng X, Rehman MU, Khalid Z and Yue D (2022) Updating inventory, deformation, and development characteristics of landslides in Hunza Valley, NW Karakoram, Pakistan by SBAS-InSAR. Remote Sens 14. https://doi.org/10.3390/rs14194907

Sun Q, Zhang L, Ding XL, Hu J, Li ZW, Zhu JJ (2015) Slope deformation prior to Zhouqu, China landslide from InSAR time series analysis. Remote Sens Environ 156:45–57. https://doi.org/10.1016/j.rse.2014.09.029

Tang C, Zhu J, Qi X (2011) Landslide hazard assessment of the 2008 Wenchuan earthquake: a case study in Beichuan area. Can Geotech J 48:128–145

Tian Y, Xu C, Ma S, Xu X, Wang S, Zhang H (2018) Inventory and spatial distribution of landslides triggered by the 8th august 2017 mw 6.5 Jiuzhaigou Earthquake. China Journal of Earth Science 30:206–217. https://doi.org/10.1007/s12583-018-0869-2

Tomás R, Li Z, Lopez-Sanchez JM, Liu P, Singleton A (2015) Using wavelet tools to analyse seasonal variations from InSAR time-series data: a case study of the Huangtupo landslide. Landslides 13:437–450. https://doi.org/10.1007/s10346-015-0589-y

Vecchiotti F, Amabile AS, Clemente S, Ostermann M, Nicodemo G and Peduto D (2022) Kinematic and geometric characterization of the vögelsberg rockslide (Tyrol, Austria) by means of MT-InSAR data. Geosciences

Xie M, Zhao W, Ju N, He C, Huang H and Cui Q (2020) Landslide evolution assessment based on InSAR and real-time monitoring of a large reactivated landslide, Wenchuan, China. Engineering Geology 277. https://doi.org/10.1016/j.enggeo.2020.105781

Xu C, Xu X, Shyu JBH, Zheng W, Min W (2014) Landslides triggered by the 22 July 2013 Minxian-Zhangxian, China, mw 5.9 earthquake: inventory compiling and spatial distribution analysis. J Asian Earth Sci 92:125–142. https://doi.org/10.1016/j.jseaes.2014.06.014

Xue Y, Meng X, Wasowsk J, Chen G, Li K, Guo P, Bovenga F and Zeng R (2015) Spatial analysis of surface deformation distribution detected by persistent scatterer interferometry in Lanzhou Region, China. Environ Earth Sci 75. https://doi.org/10.1007/s12665-015-4806-8

Yang W, Wang Y, Wang Y, Ma C, Ma Y (2020) Retrospective deformation of the baige landslide using optical remote sensing images. Landslides 17:659–668. https://doi.org/10.1007/s10346-019-01311-7

Yi Y, Zhang Z, Zhang W, Jia H and Zhang J (2020) Landslide susceptibility mapping using multiscale sampling strategy and convolutional neural network: a case study in Jiuzhaigou Region. Catena 195. https://doi.org/10.1016/j.catena.2020.104851

Yin Y, Zheng W, Liu Y, Zhang J, Li X (2010) Integration of GPS with InSAR to monitoring of the Jiaju landslide in Sichuan, China. Landslides 7:359–365. https://doi.org/10.1007/s10346-010-0225-9

Yu H, Li C, Zhou J-Q, Chen W, Long J, Wang X, Peng T (2020) Recent rainfall- and excavation-induced bedding rockslide occurring on 22 October 2018 along the Jian-en Expressway, Hubei, China. Landslides 17:2619–2629. https://doi.org/10.1007/s10346-020-01468-6

Zhang S, Jiang Q, Shi C, Xu X, Gong Y, Xi J, Liu W and Liu B (2021) Application of sentinel-1 and-2 images in measuring the deformation of Kuh-e-Namak (dashti) Namakier, Iran. Remote Sens 13. https://doi.org/10.3390/rs13040785

Zhang X, Yu G, Li P and Li ZB (2017) Landslide zoning analysis in zhouqu under different rainfall warning levels. Environ Earth Sci 76. https://doi.org/10.1007/s12665-017-6932-y

Zhang Y, Meng X, Jordan C, Novellino A, Dijkstra T, Chen G (2018) Investigating slow-moving landslides in the Zhouqu region of China using InSAR time series. Landslides 15:1299–1315

Zhang Y, Meng X, Novellino A, Dijkstra T, Chen G, Jordan C, Li Y, Su X (2022) Characterization of pre-failure deformation and evolution of a large earthflow using InSAR monitoring and optical image interpretation. Landslides 19:35–50. https://doi.org/10.1007/s10346-021-01744-z

Zhang Z (2020) Mechanism of the 2019 Yahuokou landslide reactivation in Gansu, China and its causes. Landslides 17:1429–1440. https://doi.org/10.1007/s10346-020-01384-9

Zhao B, Wang YS, Luo YH, Li J, Zhang X and Shen T (2018) Landslides and dam damage resulting from the Jiuzhaigou earthquake (8 August 2017), Sichuan, China. R Soc Open Sci 5:171418. https://doi.org/10.1098/rsos.171418

Zhao C, Zhang Q, He Y, Peng J, Yang C and Kang Y (2016) Small-scale loess landslide monitoring with small baseline subsets interferometric synthetic aperture radar technique—case study of Xingyuan landslide, Shaanxi, China. J Appl Remote Sens 10. https://doi.org/10.1117/1.Jrs.10.026030

Zhao F, Meng X, Zhang Y, Chen G, Su X, Yue D (2019) Landslide susceptibility mapping of karakorum highway combined with the application of SBAS-InSAR technology. Sensors (basel) 19:2685. https://doi.org/10.3390/s19122685

Zhou C, Cao Y, Hu X, Yin K, Wang Y, Catani F (2022) Enhanced dynamic landslide hazard mapping using MT-InSAR method in the three gorges reservoir area. Landslides 19:1585–1597. https://doi.org/10.1007/s10346-021-01796-1