Insights into the antimicrobial effects of ceritinib against Staphylococcus aureus in vitro and in vivo by cell membrane disruption
Tóm tắt
According to a 2019 report from the Centers of Disease Control and Prevention (CDC), methicillin-resistant Staphylococcus aureus (MRSA) was listed as one of the “serious threats” that had become a global public challenge in hospitals and community. Biofilm-associated infections and refractory persisters of S. aureus also impede the effectiveness of conventional antibiotics that have greatly increased difficulty in clinical therapy. There is an urgent need to develop new antimicrobials with antibiofilm and anti-persister capacities, and drug repurposing is the most effective and most economical solution to the problem. The present study profiles the antimicrobial activity of ceritinib, a tyrosine kinase inhibitor, against S. aureus in vitro and in vivo. We investigated the antimicrobial efficacy of ceritinib against planktonic and persistent S. aureus by a time-killing kinetics assay. Then, antibiofilm effect of ceritinib was assessed by crystal violet staining and laser confocal microscope observation. Ceritinib showed biofilm inhibition and mature biofilm eradication, and possesses robust bactericidal activity against S. aureus persisters. We also evaluated antimicrobial efficacy in vivo using a subcutaneous abscess infection model. Ceritinib ameliorated infection in a subcutaneous abscess mouse model and only showed negligible systemic toxicity in vivo. Mechanism exploration was conducted by transmission electron microscopy, fluorescently labeled giant unilamellar vesicle assays, and a series of fluorescent dyes. In conclusion, we find ceritinib represents potential bactericidal activity against MRSA by disrupting cell membrane integrity and inducing reactive oxygen species production, suggesting ceritinib has the potential to treat MRSA-related infections.
Tài liệu tham khảo
Bai S, Wang J, Yang K, Zhou C, Xu Y, Song J, Gu Y, Chen Z, Wang M, Shoen C, Andrade B, Cynamon M, Zhou K, Wang H, Cai Q, Oldfield E, Zimmerman SC, Bai Y, Feng X (2021) A polymeric approach toward resistance-resistant antimicrobial agent with dual-selective mechanisms of action. Sci Adv. https://doi.org/10.1126/sciadv.abc9917
Cho BC, Obermannova R, Bearz A, McKeage M, Kim DW, Batra U, Borra G, Orlov S, Kim SW, Geater SL, Postmus PE, Laurie SA, Park K, Yang CT, Ardizzoni A, Bettini AC, de Castro G, Jr., Kiertsman F, Chen Z, Lau YY, Viraswami-Appanna K, Passos VQ, Dziadziuszko R (2019) Efficacy and safety of ceritinib (450 mg/d or 600 mg/d) with food versus 750-mg/d fasted in patients with ALK receptor tyrosine kinase (ALK)-positive NSCLC: primary efficacy results from the ASCEND-8 study. J Thorac 14(7):1255–1265. https://doi.org/10.1016/j.jtho.2019.03.002
Conlon BP, Rowe SE, Gandt AB, Nuxoll AS, Donegan NP, Zalis EA, Clair G, Adkins JN, Cheung AL, Lewis K (2016) Persister formation in Staphylococcus aureus is associated with ATP depletion. Nat Microbiol 1:16051. https://doi.org/10.1038/nmicrobiol.2016.51
Craft KM, Nguyen JM, Berg LJ, Townsend SD (2019) Methicillin-resistant Staphylococcus aureus (MRSA): antibiotic-resistance and the biofilm phenotype. Medchemcomm 10(8):1231–1241. https://doi.org/10.1039/c9md00044e
Crunkhorn S (2017) Polypharmacology: tepurposing ceritinib. Nat Rev Drug Discov 16(12):828. https://doi.org/10.1038/nrd.2017.233
David MZ, Daum RS (2010) Community-associated methicillin-resistant Staphylococcus aureus: epidemiology and clinical consequences of an emerging epidemic. Clin Microbiol Rev 23(3):616–687. https://doi.org/10.1128/cmr.00081-09
de Breij A, Riool M, Cordfunke RA, Malanovic N, de Boer L, Koning RI, Ravensbergen E, Franken M, van der Heijde T, Boekema BK, Kwakman PHS, Kamp N, El Ghalbzouri A, Lohner K, Zaat SAJ, Drijfhout JW, Nibbering PH (2018) The antimicrobial peptide SAAP-148 combats drug-resistant bacteria and biofilms. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aan4044
De Oliveira DMP, Bohlmann L, Conroy T, Jen FE, Everest-Dass A, Hansford KA, Bolisetti R, El-Deeb IM, Forde BM, Phan MD, Lacey JA, Tan A, Rivera-Hernandez T, Brouwer S, Keller N, Kidd TJ, Cork AJ, Bauer MJ, Cook GM, Davies MR, Beatson SA, Paterson DL, McEwan AG, Li J, Schembri MA, Blaskovich MAT, Jennings MP, McDevitt CA, von Itzstein M, Walker MJ (2020) Repurposing a neurodegenerative disease drug to treat Gram-negative antibiotic-resistant bacterial sepsis. Sci Transl Med. https://doi.org/10.1126/scitranslmed.abb3791
Dos Santos SBF, Pereira SA, Rodrigues FAM, da Silva ACC, de Almeida RR, Sousa ACC, Fechine L, Denardin JC, Araneda F, Sá L, da Silva CR, Nobre Júnior HV, Ricardo N (2020) Antibacterial activity of fluoxetine-loaded starch nanocapsules. Int J Biol Macromol 164:2813–2817. https://doi.org/10.1016/j.ijbiomac.2020.08.184
Ezraty B, Gennaris A, Barras F, Collet JF (2017) Oxidative stress, protein damage and repair in bacteria. Nat Rev Microbiol 15(7):385–396. https://doi.org/10.1038/nrmicro.2017.26
Fukazawa H, Fukuyama M, Miyazaki Y (2019) Expression of active Staphylococcus aureus tyrosine kinases in a human cell line. Biol Pharm Bull 42(3):411–416. https://doi.org/10.1248/bpb.b18-00722
García-Fernández E, Koch G, Wagner RM, Fekete A, Stengel ST, Schneider J, Mielich-Süss B, Geibel S, Markert SM, Stigloher C, Lopez D (2017) Membrane microdomain disassembly inhibits MRSA antibiotic resistance. Cell 171(6):1354-1367.e20. https://doi.org/10.1016/j.cell.2017.10.012
Gaurav A, Gupta V, Shrivastava SK, Pathania R (2021) Mechanistic insights into synergy between nalidixic acid and tetracycline against clinical isolates of Acinetobacter baumannii and Escherichia coli. Commun Biol 4(1):542. https://doi.org/10.1038/s42003-021-02074-5
Gruszczyk J, Olivares-Illana V, Nourikyan J, Fleurie A, Béchet E, Gueguen-Chaignon V, Freton C, Aumont-Nicaise M, Moréra S, Grangeasse C, Nessler S (2013) Comparative analysis of the Tyr-kinases CapB1 and CapB2 fused to their cognate modulators CapA1 and CapA2 from Staphylococcus aureus. PLoS ONE 8(10):e75958. https://doi.org/10.1371/journal.pone.0075958
Guisier F, Piton N, Bellefleur M, Delberghe N, Avenel G, Angot E, Vittecoq O, Ould-Slimane M, Morisse-Pradier H, Salaun M, Thiberville L (2020) Crizotinib-induced osteitis mimicking bone metastasis in a stage IV ALK-rearranged NSCLC patient: a case report. BMC Cancer 20(1):14. https://doi.org/10.1186/s12885-019-6486-3
Gunther G, Malacrida L, Jameson DM, Gratton E, Sánchez SA (2021) LAURDAN since weber: the quest for visualizing membrane heterogeneity. Acc Chem Res 54(4):976–987. https://doi.org/10.1021/acs.accounts.0c00687
Guo XJ, Cao B, Wang CY, Lu SY, Hu XL (2020) In vivo photothermal inhibition of methicillin-resistant Staphylococcus aureus infection by in situ templated formulation of pathogen-targeting phototheranostics. Nanoscale 12(14):7651–7659. https://doi.org/10.1039/d0nr00181c
Hirota T, Muraki S, Ieiri I (2019) Clinical pharmacokinetics of anaplastic lymphoma kinase inhibitors in non-small-cell lung cancer. Clin Pharmacokinet 58(4):403–420. https://doi.org/10.1007/s40262-018-0689-7
Hodille E, Rose W, Diep BA, Goutelle S, Lina G, Dumitrescu O (2017) The role of antibiotics in modulating virulence in Staphylococcus aureus. Clin Microbiol Rev 30(4):887–917. https://doi.org/10.1128/cmr.00120-16
Hyun S, Choi Y, Jo D, Choo S, Park TW, Park SJ, Kim S, Lee S, Park S, Jin SM, Cheon DH, Yoo W, Arya R, Chong YP, Kim KK, Kim YS, Lee Y, Yu J (2020) Proline hinged amphipathic α-helical peptide sensitizes gram-negative bacteria to various gram-positive antibiotics. J Med Chem 63(23):14937–14950. https://doi.org/10.1021/acs.jmedchem.0c01506
Jia Y, Zheng Z, Xue M, Zhang S, Hu F, Li Y, Yang Y, Zou M, Li S, Wang L, Guan M, Xue Y (2019) Extracellular vesicles from albumin-induced tubular epithelial cells promote the M1 macrophage phenotype by targeting klotho. Mol Ther 27(8):1452–1466. https://doi.org/10.1016/j.ymthe.2019.05.019
Khan F, Pham DTN, Tabassum N, Oloketuyi SF, Kim YM (2020) Treatment strategies targeting persister cell formation in bacterial pathogens. Crit Rev Microbiol 46(6):665–688. https://doi.org/10.1080/1040841x.2020.1822278
Khozin S, Blumenthal GM, Zhang L, Tang S, Brower M, Fox E, Helms W, Leong R, Song P, Pan Y, Liu Q, Zhao P, Zhao H, Lu D, Tang Z, Al Hakim A, Boyd K, Keegan P, Justice R, Pazdur R (2015) FDA approval: ceritinib for the treatment of metastatic anaplastic lymphoma kinase-positive non-small cell lung cancer. Clin Cancer Res 21(11):2436–2439. https://doi.org/10.1158/1078-0432.Ccr-14-3157
Kim W, Zou G, Hari TPA, Wilt IK, Zhu W, Galle N, Faizi HA, Hendricks GL, Tori K, Pan W, Huang X, Steele AD, Csatary EE, Dekarske MM, Rosen JL, Ribeiro NQ, Lee K, Port J, Fuchs BB, Vlahovska PM, Wuest WM, Gao H, Ausubel FM, Mylonakis E (2019) A selective membrane-targeting repurposed antibiotic with activity against persistent methicillin-resistant Staphylococcus aureus. Proc Natl Acad Sci USA 116(33):16529–16534. https://doi.org/10.1073/pnas.1904700116
Kosgodage US, Matewele P, Mastroianni G, Kraev I, Brotherton D, Awamaria B, Nicholas AP, Lange S, Inal JM (2019) Peptidylarginine deiminase inhibitors reduce bacterial membrane vesicle release and sensitize bacteria to antibiotic treatment. Front Cell Infect Microbiol 9:227. https://doi.org/10.3389/fcimb.2019.00227
Lakhundi S, Zhang K (2018) Methicillin-resistant Staphylococcus aureus: molecular characterization, evolution, and epidemiology. Clin Microbiol Rev. https://doi.org/10.1128/cmr.00020-18
Le P, Kunold E, Macsics R, Rox K, Jennings MC, Ugur I, Reinecke M, Chaves-Moreno D, Hackl MW, Fetzer C, Mandl FAM, Lehmann J, Korotkov VS, Hacker SM, Kuster B, Antes I, Pieper DH, Rohde M, Wuest WM, Medina E, Sieber SA (2020) Repurposing human kinase inhibitors to create an antibiotic active against drug-resistant Staphylococcus aureus, persisters and biofilms. Nat Chem 12(2):145–158. https://doi.org/10.1038/s41557-019-0378-7
Li S, She P, Zhou L, Zeng X, Xu L, Liu Y, Chen L, Wu Y (2020) High-throughput identification of antibacterials against Pseudomonas aeruginosa. Front Microbiol 11:591426. https://doi.org/10.3389/fmicb.2020.591426
Liu P, Yang Y, Tang Y, Yang T, Sang Z, Liu Z, Zhang T, Luo Y (2019) Design and synthesis of novel pyrimidine derivatives as potent antitubercular agents. Eur J Med Chem 163:169–182. https://doi.org/10.1016/j.ejmech.2018.11.054
Liu Y, She P, Xu L, Chen L, Li Y, Liu S, Li Z, Hussain Z, Wu Y (2021) Antimicrobial, antibiofilm, and anti-persister activities of penfluridol against Staphylococcus aureus. Front Microbiol 12:727692. https://doi.org/10.3389/fmicb.2021.727692
Magana M, Sereti C, Ioannidis A, Mitchell CA, Ball AR, Magiorkinis E, Chatzipanagiotou S, Hamblin MR, Hadjifrangiskou M, Tegos GP (2018) Options and limitations in clinical investigation of bacterial biofilms. Clin Microbiol Rev. https://doi.org/10.1128/cmr.00084-16
McGoverin C, Robertson J, Jonmohamadi Y, Swift S, Vanholsbeeck F (2020) Species dependence of SYTO 9 staining of bacteria. Front Microbiol 11:545419. https://doi.org/10.3389/fmicb.2020.545419
Peacock SJ, Paterson GK (2015) Mechanisms of methicillin resistance in Staphylococcus aureus. Annu Rev Biochem 84:577–601. https://doi.org/10.1146/annurev-biochem-060614-034516
Peyclit L, Baron SA, Rolain JM (2019) Drug repurposing to fight colistin and carbapenem-resistant bacteria. Front Cell Infect Microbiol 9:193. https://doi.org/10.3389/fcimb.2019.00193
Peyrusson F, Varet H, Nguyen TK, Legendre R, Sismeiro O, Coppée JY, Wolz C, Tenson T, Van Bambeke F (2020) Intracellular Staphylococcus aureus persisters upon antibiotic exposure. Nat Commun 11(1):2200. https://doi.org/10.1038/s41467-020-15966-7
Pinto RM, Lopes-de-Campos D, Martins MCL, Van Dijck P, Nunes C, Reis S (2019) Impact of nanosystems in Staphylococcus aureus biofilms treatment. FEMS Microbiol Rev 43(6):622–641. https://doi.org/10.1093/femsre/fuz021
Regen SL (2021) Improving the cellular selectivity of a membrane-disrupting antimicrobial agent by monomer control and by taming. Molecules. https://doi.org/10.3390/molecules26020374
Rumbaugh KP, Sauer K (2020) Biofilm dispersion. Nat Rev Microbiol 18(10):571–586. https://doi.org/10.1038/s41579-020-0385-0
Shaw AT, Kim DW, Mehra R, Tan DS, Felip E, Chow LQ, Camidge DR, Vansteenkiste J, Sharma S, De Pas T, Riely GJ, Solomon BJ, Wolf J, Thomas M, Schuler M, Liu G, Santoro A, Lau YY, Goldwasser M, Boral AL, Engelman JA (2014) Ceritinib in ALK-rearranged non-small-cell lung cancer. N Engl J Med 370(13):1189–1197. https://doi.org/10.1056/NEJMoa1311107
She P, Li S, Zhou L, Luo Z, Liao J, Xu L, Zeng X, Chen T, Liu Y, Wu Y (2020) Insights into idarubicin antimicrobial activity against methicillin-resistant Staphylococcus aureus. Virulence 11(1):636–651. https://doi.org/10.1080/21505594.2020.1770493
Shi J, Zhang F, Chen L, Bravo A, Soberón M, Sun M (2021) Systemic mitochondrial disruption is a key event in the toxicity of bacterial pore-forming toxins to Caenorhabditis elegans. Environ Microbiol 23(9):4896–4907. https://doi.org/10.1111/1462-2920.15376
Steinbuch KB, Fridman M (2016) Mechanisms of resistance to membrane-disrupting antibiotics in Gram-positive and Gram-negative bacteria. MedChemComm 7(1):86–102. https://doi.org/10.1039/c5md00389j
Strahl H, Errington J (2017) Bacterial membranes: structure, domains, and function. Annu Rev Microbiol 71:519–538. https://doi.org/10.1146/annurev-micro-102215-095630
Tan F, She P, Zhou L, Liu Y, Chen L, Luo Z, Wu Y (2019) Bactericidal and anti-biofilm activity of the retinoid compound CD437 against Enterococcus faecalis. Front Microbiol 10:2301. https://doi.org/10.3389/fmicb.2019.02301
Tan X, Coureuil M, Charbit A, Jamet A (2020) Multitasking actors of Staphylococcus aureus metabolism and virulence. Trends Microbiol 28(1):6–9. https://doi.org/10.1016/j.tim.2019.10.013
Tong SY, Davis JS, Eichenberger E, Holland TL, Fowler VG Jr (2015) Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev 28(3):603–661. https://doi.org/10.1128/cmr.00134-14
Vella V, Galgani I, Polito L, Arora AK, Creech CB, David MZ, Lowy FD, Macesic N, Ridgway JP, Uhlemann AC, Bagnoli F (2021) Staphylococcus aureus skin and soft tissue infection recurrence rates in outpatients: a retrospective database study at 3 US Medical Centers. Clin Infect Dis 73(5):e1045–e1053. https://doi.org/10.1093/cid/ciaa1717
Yu JH, Xu XF, Hou W, Meng Y, Huang MY, Lin J, Chen WM (2021) Synthetic cajaninstilbene acid derivatives eradicate methicillin-resistant Staphylococcus aureus persisters and biofilms. Eur J Med Chem. https://doi.org/10.1016/j.ejmech.2021.113691
Zhang S, Qu X, Tang H, Wang Y, Yang H, Yuan W, Yue B (2021) Diclofenac resensitizes methicillin-resistant Staphylococcus aureus to β-lactams and prevents implant infections. Adv Sci 8(13):2100681. https://doi.org/10.1002/advs.202100681
Zheng B, Mao JH, Qian L, Zhu H, Gu DH, Pan XD, Yi F, Ji DM (2015) Pre-clinical evaluation of AZD-2014, a novel mTORC1/2 dual inhibitor, against renal cell carcinoma. Cancer Lett 357(2):468–475. https://doi.org/10.1016/j.canlet.2014.11.012
Zhou L, She P, Tan F, Li S, Zeng X, Chen L, Luo Z, Wu Y (2020) Repurposing antispasmodic agent otilonium bromide for treatment of Staphylococcus aureus infections. Front Microbiol 11:1720. https://doi.org/10.3389/fmicb.2020.01720