Insights into the Hendra virus N TAIL –XD complex: Evidence for a parallel organization of the helical MoRE at the XD surface stabilized by a combination of hydrophobic and polar interactions
Tài liệu tham khảo
Wang, 2000, The exceptionally large genome of Hendra virus: support for creation of a new genus within the family Paramyxoviridae, J. Virol., 74, 9972, 10.1128/JVI.74.21.9972-9979.2000
Marsh, 2012, Cedar virus: a novel Henipavirus isolated from Australian bats, PLoS Pathog., 8, e1002836, 10.1371/journal.ppat.1002836
Habchi, 2011, Characterization of the interactions between the nucleoprotein and the phosphoprotein of Henipaviruses, J. Biol. Chem., 286, 13583, 10.1074/jbc.M111.219857
Martinho, 2013, Assessing induced folding within the intrinsically disordered C-terminal domain of the Henipavirus nucleoproteins by site directed spin labeling EPR spectroscopy, J. Biomol. Struct. Dyn., 31, 453, 10.1080/07391102.2012.706068
Communie, 2013, Atomic resolution description of the interaction between the nucleoprotein and phosphoprotein of Hendra virus, PLoS Pathog., 9, e1003631, 10.1371/journal.ppat.1003631
Chan, 2004, Mapping of domains responsible for nucleocapsid protein–phosphoprotein interaction of Henipaviruses, J. Gen. Virol., 85, 1675, 10.1099/vir.0.19752-0
Omi-Furutani, 2010, Novel phosphoprotein-interacting region in Nipah virus nucleocapsid protein and its involvement in viral replication, J. Virol., 84, 9793, 10.1128/JVI.00339-10
Blocquel, 2012, Compaction and binding properties of the intrinsically disordered C-terminal domain of Henipavirus nucleoprotein as unveiled by deletion studies, Mol. BioSyst., 8, 392, 10.1039/C1MB05401E
Karlin, 2003, Structural disorder and modular organization in Paramyxovirinae N and P, J. Gen. Virol., 84, 3239, 10.1099/vir.0.19451-0
Habchi, 2010, Structural disorder within henipavirus nucleoprotein and phosphoprotein: from predictions to experimental assessment, PLoS ONE, 5, e11684, 10.1371/journal.pone.0011684
Dunker, 2008, The unfoldomics decade: an update on intrinsically disordered proteins, BMC Genomics, 9, S1, 10.1186/1471-2164-9-S2-S1
Dunker, 2008, Function and structure of inherently disordered proteins, Curr. Opin. Struct. Biol., 18, 756, 10.1016/j.sbi.2008.10.002
Uversky, 2010, The mysterious unfoldome: structureless, underappreciated, yet vital part of any given proteome, J. Biomed. Biotechnol., 2010, 568068, 10.1155/2010/568068
Uversky, 2010, Understanding protein non-folding, Biochim. Biophys. Acta, 1804, 1231, 10.1016/j.bbapap.2010.01.017
Turoverov, 2010, The protein kingdom extended: ordered and intrinsically disordered proteins, their folding, supramolecular complex formation, and aggregation, Prog. Biophys. Mol. Biol., 102, 73, 10.1016/j.pbiomolbio.2010.01.003
Chouard, 2011, Structural biology: breaking the protein rules, Nature, 471, 151, 10.1038/471151a
Uversky, 2013, A decade and a half of protein intrinsic disorder: biology still waits for physics, Protein Sci., 22, 693, 10.1002/pro.2261
Habchi, 2014, Introducing protein intrinsic disorder, Chem. Rev., 114, 6561, 10.1021/cr400514h
Baronti, 2015, Dynamics of the intrinsically disordered C-terminal domain of the Nipah virus nucleoprotein and interaction with the X domain of the phosphoprotein as unveiled by NMR spectroscopy, ChemBioChem, 16, 268, 10.1002/cbic.201402534
Mohan, 2006, Analysis of molecular recognition features (MoRFs), J. Mol. Biol., 362, 1043, 10.1016/j.jmb.2006.07.087
Vacic, 2007, Characterization of molecular recognition features, MoRFs, and their binding partners, J. Proteome Res., 6, 2351, 10.1021/pr0701411
Johansson, 2003, Crystal structure of the measles virus phosphoprotein domain responsible for the induced folding of the C-terminal domain of the nucleoprotein, J. Biol. Chem., 278, 44567, 10.1074/jbc.M308745200
Kingston, 2004, Structural basis for the attachment of a paramyxoviral polymerase to its template, Proc. Natl. Acad. Sci. U. S. A., 101, 8301, 10.1073/pnas.0402690101
Whitmore, 2004, DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data, Nucleic Acids Res., 32, W668, 10.1093/nar/gkh371
Whitmore, 2008, Protein secondary structure analyses from circular dichroism spectroscopy: methods and reference databases, Biopolymers, 89, 392, 10.1002/bip.20853
Uversky, 2002, What does it mean to be natively unfolded?, Eur. J. Biochem., 269, 2, 10.1046/j.0014-2956.2001.02649.x
Brocca, 2011, Compaction properties of an intrinsically disordered protein: sic1 and its kinase-inhibitor domain, Biophys. J., 100, 2243, 10.1016/j.bpj.2011.02.055
Gast, 1994, Compactness of protein molten globules: temperature-induced structural changes of the apomyoglobin folding intermediate, Eur. Biophys. J., 23, 297, 10.1007/BF00213579
Wilkins, 1999, Hydrodynamic radii of native and denatured proteins measured by pulse field gradient NMR techniques, Biochemistry, 38, 16424, 10.1021/bi991765q
Konarev, 2003, PRIMUS: a Windows PC-based system for small-angle scattering data analysis, J. Appl. Crystallogr., 36, 1277, 10.1107/S0021889803012779
Svergun, 1992, Determination of the regularization parameters in indirect-transform methods using perceptual criteria, J. Appl. Crystallogr., 25, 495, 10.1107/S0021889892001663
Franke, 2009, DAMMIF, a program for rapid ab-initio shape determination in small-angle scattering, J. Appl. Crystallogr., 42, 342, 10.1107/S0021889809000338
Volkov, 2003, Uniqueness of ab initio shape determination in small-angle scattering, J. Appl. Crystallogr., 36, 860, 10.1107/S0021889803000268
Kelley, 2009, Protein structure prediction on the Web: a case study using the Phyre server, Nat. Protoc., 4, 363, 10.1038/nprot.2009.2
Pettersen, 2004, UCSF Chimera—a visualization system for exploratory research and analysis, J. Comput. Chem., 25, 1605, 10.1002/jcc.20084
van Gunsteren, 1996
Ramachandran, 2011, Automated minimization of steric clashes in protein structures, Proteins, 79, 261, 10.1002/prot.22879
Harris, 2002, Structural basis of perturbed pKa values of catalytic groups in enzyme active sites, IUBMB Life, 53, 85, 10.1080/15216540211468
Uversky, 2002, Natively unfolded proteins: a point where biology waits for physics, Protein Sci., 11, 739, 10.1110/ps.4210102
Tompa, 2002, Intrinsically unstructured proteins, Trends Biochem. Sci., 27, 527, 10.1016/S0968-0004(02)02169-2
Svergun, 1995, CRYSOL, a program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates, J. Appl. Crystallogr., 28, 768, 10.1107/S0021889895007047
Kingston, 2008, Structure of the nucleocapsid-binding domain from the mumps virus polymerase; an example of protein folding induced by crystallization, J. Mol. Biol., 379, 719, 10.1016/j.jmb.2007.12.080
Yegambaram, 2013, Protein domain definition should allow for conditional disorder, Protein Sci., 22, 1502, 10.1002/pro.2336
D'Urzo, 2015, Molecular basis for structural heterogeneity of an intrinsically disordered protein bound to a partner by combined ESI-IM-MS and modeling, J. Am. Soc. Mass Spectrom., 26, 472, 10.1007/s13361-014-1048-z
Tompa, 2008, Fuzzy complexes: polymorphism and structural disorder in protein–protein interactions, Trends Biochem. Sci., 33, 2, 10.1016/j.tibs.2007.10.003
Bhattacherjee, 2012, Coupled folding-binding in a hydrophobic/polar protein model: impact of synergistic folding and disordered flanks, Biophys. J., 102, 569, 10.1016/j.bpj.2011.12.008
Fuxreiter, 2012, Fuzziness: linking regulation to protein dynamics, Mol. BioSyst., 8, 168, 10.1039/C1MB05234A
Ringkjøbing Jensen, 2011, Intrinsic disorder in measles virus nucleocapsids, Proc. Natl. Acad. Sci. U. S. A., 108, 9839, 10.1073/pnas.1103270108
Krumm, 2013, The measles virus nucleocapsid protein tail domain is dispensable for viral polymerase recruitment and activity, J. Biol. Chem., 288, 29943, 10.1074/jbc.M113.503862
Meszaros, 2007, Molecular principles of the interactions of disordered proteins, J. Mol. Biol., 372, 549, 10.1016/j.jmb.2007.07.004
Houben, 2007, Interaction of the C-terminal domains of sendai virus N and P proteins: comparison of polymerase-nucleocapsid interactions within the paramyxovirus family, J. Virol., 81, 6807, 10.1128/JVI.00338-07
Schreiber, 2009, Fundamental aspects of protein–protein association kinetics, Chem. Rev., 109, 839, 10.1021/cr800373w
Xue, 2014, Role of electrostatic interactions in binding of peptides and intrinsically disordered proteins to their folded targets. 1. NMR and MD characterization of the complex between the c-Crk N-SH3 domain and the peptide Sos, Biochemistry, 53, 6473, 10.1021/bi500904f
Wong, 2013, On the importance of polar interactions for complexes containing intrinsically disordered proteins, PLoS Comput. Biol., 9, e1003192, 10.1371/journal.pcbi.1003192
Ganguly, 2012, Electrostatically accelerated coupled binding and folding of intrinsically disordered proteins, J. Mol. Biol., 422, 674, 10.1016/j.jmb.2012.06.019
Ganguly, 2013, Electrostatically accelerated encounter and folding for facile recognition of intrinsically disordered proteins, PLoS Comput. Biol., 9, e1003363, 10.1371/journal.pcbi.1003363
Blocquel, 2012, Transcription et réplication des Mononégavirales: une machine moléculaire originale, Virologie, 16, 225
Habchi, 2012, Structural disorder within paramyxovirus nucleoproteins and phosphoproteins, Mol. BioSyst., 8, 69, 10.1039/C1MB05204G
Habchi, 2012, Structural disorder within the nucleoprotein and phosphoprotein from measles, Nipah and Hendra viruses, 47