Insights into the Electrochemical Behavior and Kinetics of NiP@PANI/rGO as a High-Performance Electrode for Alkaline Urea Oxidation
Tóm tắt
Efficient and low-cost electrocatalyst materials are highly in demand for energy generation from small organic materials. Herein, we developed polyaniline (PANI)/reduced graphene oxide (rGO) (PANI/rGO) as an efficient and low-cost electrocatalyst support material to improve the efficiency of nickel phosphide (NiP) for alkaline urea oxidation via a combination of facile solvothermal method and simple ultrasonic/heat mediated dispersion process. The synthesized electrode material was characterized using HRSEM, XRD, ART-FTIR, UV–VIS spectroscopy, and TGA. The physical characterization revealed the multifaceted phases and microspherical NiP with a particle size of 2.44 µm and dispersed NiP on the surface of support materials. Furthermore, the electrochemical activities of synthesized electrode materials towards alkaline urea oxidation were tested using cyclic voltammetry (CV). The electrochemical study depicts the higher performance of NiP@PANI/rGO in terms of low onset potential (0.292 V), anodic peak potential of 0.427 V to drive a high current density of 15.76 mAcm−2, high electrochemically active surface area (18.29 cm2mg−1), and high stability towards alkaline urea electro-oxidation compared with pristine NiP and NiP@rGO. These significant efficiency improvements of NiP can be ascribed by the synergetic effect between PANI and rGO and higher immobilization of NiP particles on as-synthesized PANI/rGO support material due to strong interaction between Ni2+ and –N.H.–fragments of PANI. Therefore, the higher electrochemical performance of a novel electrode material NiP@PANI/rGO would be a promising candidate for alkaline urea electro-oxidation in direct urea fuel cell applications.
Tài liệu tham khảo
A. Gani, J. Clean. Prod. 297, 126526 (2021). https://doi.org/10.1016/j.jclepro.2021.126526
M. Mac Kinnon, G. Razeghi, S. Samuelsen, Renew. Sustain. Energy Rev. 147, 111226 (2021). https://doi.org/10.1016/j.rser.2021.111226
M.A. Abdelkareem, K. Elsaid, T. Wilberforce, M. Kamil, E.T. Sayed, A. Olabi, Sci. Total Environ. 752, 141803 (2021). https://doi.org/10.1016/j.scitotenv.2020.141803
Y. Lyu, J. Xie, D. Wang, J. Wang, J. Mater. Sci. 55, 7184–7207 (2020). https://doi.org/10.1007/s10853-020-04497-7
J.P. Pérez-Trujillo, F. Elizalde-Blancas, S.J. McPhail, M. Della Pietra, B. Bosio, Appl. Energy 263, 114630 (2020). https://doi.org/10.1016/j.apenergy.2020.114630
R. Haider, Y. Wen, Z.F. Ma, D.P. Wilkinson, L. Zhang, X. Yuan, S. Song, J. Zhang, Chem. Soc. Rev. 50, 1138–1187 (2021). https://doi.org/10.1039/d0cs00296h
Y. Wang, G. Liu, Int. J. Hydrogen Energy 45, 33500–33511 (2020). https://doi.org/10.1016/j.ijhydene.2020.09.095
D. Sebastián, A. Serov, K. Artyushkova, J. Gordon, P. Atanassov, A.S. Aricò, V. Baglio, Chemsuschem 9, 1986–1995 (2016). https://doi.org/10.1002/cssc.201600583
A.V. Munde, B.B. Mulik, P.P. Chavan, V.S. Sapner, S.S. Narwade, S.M. Mali, B.R. Sathe, J. Phys. Chem. C 125, 2345–2356 (2021). https://doi.org/10.1021/acs.jpcc.0c10668
Q.T. Luong, S.Y. Kang, D. Lee, J. Song, M. Karuppannan, Y.H. Cho, O.J. Kwon, Mater. Chem. Front. 5, 4626–4633 (2021). https://doi.org/10.1039/d1qm00305d
X. Ren, Q. Lv, L. Liu, B. Liu, Y. Wang, A. Liu, G. Wu, Sustain. Energy Fuels 4, 15–30 (2019). https://doi.org/10.1039/c9se00460b
Y.H. Liu, C.H. Hung, C.L. Hsu, Sep. Purif. Technol. 258, 118002 (2021). https://doi.org/10.1016/j.seppur.2020.118002
P. Salarizadeh, M. Bagher, N. Askari, N. Salarizadeh, Mater. Chem. Phys. 239, 121958 (2020). https://doi.org/10.1016/j.matchemphys.2019.121958
R. Jiang, D.T. Tran, J.P. McClure, D. Chu, ACS Catal. 4, 2577–2586 (2014). https://doi.org/10.1021/cs500462z
A. Ray, S. Sultana, L. Paramanik, K.M. Parida, J. Mater. Chem. A 8, 19196–19245 (2020). https://doi.org/10.1039/d0ta05797e
U. Lee, Y.N. Lee, Y. S. Yoon 8, 1–11 (2020). https://doi.org/10.3389/fchem.2020.00777
A. Maciej, A. Stolarczyk, M. Basiaga, W. Simka 305, 256–263 (2019). https://doi.org/10.1016/j.electacta.2019.03.045
A.G. Olabi, M.A. Abdelkareem, T. Wilberforce, E.T. Sayed, Renew. Sustain. Energy Rev. 135, 110026 (2021). https://doi.org/10.1016/j.rser.2020.110026
N.R. Chodankar, A.K. Nanjundan, D. Losic, D.P. Dubal, J. Baek, Mater. Today Adv. 6, 100053 (2020). https://doi.org/10.1016/j.mtadv.2019.100053
Z. Zheng, L. Xiao, P. Huang, F. Wang, Appl. Mater. Today 24, 101069 (2021). https://doi.org/10.1016/j.apmt.2021.101069
W. Du, S. Wei, K. Zhou, J. Guo, H. Pang, X. Qian, Mater. Res. Bull. 61, 333–339 (2015). https://doi.org/10.1016/j.materresbull.2014.10.038
O. Folorunso, Y. Hamam, R. Sadiku, S.S. Ray, G.J. Adekoya, Mater. Today Proc. 38, 635–638 (2021). https://doi.org/10.1016/j.matpr.2020.03.522
R.M. Abdel Hameed, S.S. Medany, J. Colloid Interface Sci. 513, 536–548 (2018). https://doi.org/10.1016/j.jcis.2017.11.032
M. Mazloum-Ardakani, F. Farbod, L. Hosseinzadeh, Sci. Iran. 24, 1678–1685 (2017). https://doi.org/10.24200/sci.2017.4144
B. Liang, Z. Qin, T. Li, Z. Dou, F. Zeng, Y. Cai, M. Zhu, Z. Zhou, Electrochim. Acta 177, 335–342 (2015). https://doi.org/10.1016/j.electacta.2015.01.135
R. Ding, X. Li, W. Shi, Q. Xu, L. Wang, H. Jiang, Z. Yang, E. Liu, Electrochim. Acta 222, 455–462 (2016). https://doi.org/10.1016/j.electacta.2016.10.198
N.I. Zaaba, K.L. Foo, U. Hashim, S.J. Tan, W. Liu, C.H. Voon, Procedia Eng. 184, 469–477 (2017). https://doi.org/10.1016/j.proeng.2017.04.118
M.R. Berber, N.A. Althubiti, Z.A. Alrowaili, F. Rosa, A. Iranzo, Fuel 306, 121681 (2021). https://doi.org/10.1016/j.fuel.2021.121681
Z. Yin, T. Hu, J. Wang, C. Wang, Z. Liu, J. Guo, Electrochim. Acta 119, 144–154 (2014). https://doi.org/10.1016/j.electacta.2013.12.072
B. Sydulu Singu, P. Srinivasan, S. Pabba, J. Electrochem. Soc. 159, A6–A13 (2011). https://doi.org/10.1149/2.036201jes
A.R. Pai, B. Nair, J. Nano- Electron. Phys. 5, 3–6 (2013). http://essuir.sumdu.edu.ua/handle/123456789/31028
X. Dong, S. Bin Nie, Z.G. Liu, D. yi Wang, J. Therm. Anal. Calorim. 126, 1323–1330 (2016). https://doi.org/10.1007/s10973-016-5681-6
Y. Lin, F. Hsu, T. Wu, Synth. Met. 184, 29–34 (2013). https://doi.org/10.1016/j.synthmet.2013.10.001
G.M. Neelgund, V.N. Bliznyuk, A. Oki, P. View, Appl. Catal. B. 187, 357–366 (2017). https://doi.org/10.1016/j.apcatb.2016.01.009
H.G.A.-H.A. Shah, U. K. and S. Bilal, Nanomaterials 10, 118 (2020). https://doi.org/10.3390/nano10010118
X. Sun, R. Ding, Catal. Sci. Technol. 10, 1567–1581 (2020). https://doi.org/10.1039/c9cy02618e
A.S. Anjli Gupta, Silki Sardana, Jasvir Dalal, Sushma Lather, and A.O. Maan, Rahul Tripathi, Rajesh Punia, Kuldeep Singh, ACS Appl. Energy Mater. 3, 6434–6446 (2020). https://doi.org/10.1021/acsaem.0c00684
W. Wang, T. An, G. Li, D. Xia, H. Zhao, J.C. Yu, P. Keung, "Applied Catal. B, Environ. 217, 570–580 (2017). https://doi.org/10.1016/j.apcatb.2017.06.027
F. Usman, J. Ojur, K. Cheng, A. Yousif, F. Meriaudeau, O. Bolarinwa, A. Ridwan, A. Abdelkarim, S. Rabih, A. Yar, Results Phys. 15, 102690 (2019). https://doi.org/10.1016/j.rinp.2019.102690
A. Goljanian, N. Arsalani, H. Namazi, I. Ahadzadeh, J. Electroanal. Chem. 798, 34–41 (2017). https://doi.org/10.1016/j.jelechem.2017.04.059
M.F. Mousavi, M. Hashemi, M.S. Rahmanifar, A. Noori, Electrochim. Acta 228, 290–298 (2017). https://doi.org/10.1016/j.electacta.2017.01.027
C.L. Yuan Pan, Wenhui Hu, Dapeng Liu, Yunqi Liu*, J. Mater. Chem. A 3, 13087–13094 (2015). https://doi.org/10.1039/C5TA02128F
M. Streckova, E. Mudra, R. Orinakova, L. Markusova-buckova, M. Sebek, A. Kovalcikova, T. Sopcak, Chem. Eng. J. 303, 167–181 (2016). https://doi.org/10.1016/j.cej.2016.05.147
N.B. Trung, T. Van Tam, H.R. Kim, S.H. Hur, E.J. Kim, W.M. Choi, Chem. Eng. J. 255, 89–96 (2014). https://doi.org/10.1016/j.cej.2014.06.028
F. Yang, M. Xu, S. Bao, H. Wei, H. Chai, Electrochim. Acta 137, 381–387 (2014). https://doi.org/10.1016/j.electacta.2014.06.017
Y. Pan, N. Yang, Y. Chen, Y. Lin, Y. Li, Y. Liu, C. Liu, J. Power Sources 297, 45–52 (2015). https://doi.org/10.1016/j.jpowsour.2015.07.077
Y. Zhang, J. Liu, Y. Zhang, Y. Duan, RSC Adv. 7, 54031–54038 (2017). https://doi.org/10.1039/C7RA08794B
Y. Liu, Y. Ma, S. Guang, F. Ke, H. Xu, Carbon N. Y. 83, 79–89 (2015). https://doi.org/10.1016/j.carbon.2014.11.026
Y. Zhao, G. Tang, Carbon N. Y. 50, 3064–3073 (2012). https://doi.org/10.1016/j.carbon.2012.03.001
S. Eris, Z. Das, Y. Yıldız, F. Sen, Int. J. Hydrogen Energy 3, 1–7 (2017). https://doi.org/10.1016/j.ijhydene.2017.11.051
T.T. Co, and T.D.D. Thi Kim Anh Tran Thi Huong Ly Doan, J. Chem. 4, 1–9 (2021). https://doi.org/10.1155/2021/8580754
S. Gurunathan, J.W. Han, A.A. Dayem, V. Eppakayala, J.-H. Kim, Int. J. Nanomedicine 7, 5901–5914 (2012). https://doi.org/10.2147/IJN.537397
F.W. Low, G.C. Hock, M. Kashif, N.A. Samsudin, C.F. Chau, A.R.I. Utami, M.A. Islam, C.Y. Heah, Y.M. Liew, C.W. Lai et al., Molecules 25, 4852 (2020). https://doi.org/10.3390/molecules25204852
F. Usman, J.O. Dennis, K.C. Seong, A. Yousif Ahmed, F. Meriaudeau, O.B. Ayodele, A.R. Tobi, A.A.S. Rabih, A. Yar, Results Phys. 15, 102690 (2019). https://doi.org/10.1016/j.rinp.2019.102690
P.R. Jubu, F.K. Yam, V.M. Igba, K.P. Beh, J. Solid State Chem. 290, 121576 (2020). https://doi.org/10.1016/j.jssc.2020.121576
A.T. and S.M.A.R, Ruciti, R. Bahariqusch, C. Summonte, A. Aydinle, J. Appl. Phys. 121, 234304 (2017). https://doi.org/10.1063/1.4986436
V. Vedharathinam, G.G. Botte, Electrochim. Acta 81, 292–300 (2012). https://doi.org/10.1016/j.electacta.2012.07.007
E. Lohrasbi, M. Asgari, Adv. Anal. Chem. 5, 9–18 (2015). https://doi.org/10.5923/s.aac.201501.02
R.M.A. Hameed, K.M. El-Khatib, Int. J. Hydrogen Energy 35, 2517–2529 (2010). https://doi.org/10.1016/j.ijhydene.2009.12.145
G.P. Jin, Y.F. Ding, P.P. Zheng, J. Power Sources 166, 80–86 (2007). https://doi.org/10.1016/j.jpowsour.2006.12.087
S. Majdi, A. Jabbari, H. Heli, J. Solid State Electrochem. 11, 601–607 (2007). https://doi.org/10.1007/s10008-006-0205-0
Q. Yi, W. Yu, Microchim. Acta 165, 381–386 (2009). https://doi.org/10.1007/s00604-009-0148-0
S. Chemchoub, L. Oularbi, A. El, S. Alami, F. Bentiss, Mater. Chem. Phys. 250, 123009 (2020). https://doi.org/10.1016/j.matchemphys.2020.123009
D. Liu, T. Liu, L. Zhang, F. Qu, G. Du, A.M. Asiri, X. Sun, J. Mater. Chem. A 5, 3208–3213 (2017). https://doi.org/10.1039/C6TA11127K
J.K. & H.H. Robel MehariTesfaye1, Gautam Das1, Bang Ju Park2, Sci. Rep. 9, 479 (2019). https://doi.org/10.1038/s41598-018-37011-w
N.A.M. Barakat, M.T. Amen, F.S. Al-mubaddel, M. Rezual, J. Adv. Res. 16, 43–53 (2019). https://doi.org/10.1016/j.jare.2018.12.003
W. Shi, R. Ding, X. Li, Q. Xu, E. Liu, Electrochim. Acta 242, 247–259 (2017). https://doi.org/10.1016/j.electacta.2017.05.002
W. Wang, D. Chai, J. Zhang, S. Xue, Y. Wang, Z. Lei, J. Taiwan Inst. Chem. Eng. 80, 326–332 (2017). https://doi.org/10.1016/j.jtice.2017.07.017
G. Wang, K. Ye, J. Shao, Y. Zhang, K. Zhu, K. Cheng, J. Yan, G. Wang, D. Cao, Int. J. Hydrogen Energy 43, 9316–9325 (2018). https://doi.org/10.1016/j.ijhydene.2018.03.221
I.L. Lera, S. Khasnabis, L.M. Wangatia, O.E. Femi, P.C. Ramamurthy, J. Solid State Electrochem. (2021). https://doi.org/10.1007/s10008-021-05080-z
M.T.A. Dolati, J Appl Electrochem. 40, 1941–1947 (2010). https://doi.org/10.1007/s10800-010-0170-2
F. Manea, A. Pop, C. Radovan, P. Malchev, A. Bebeselea, G. Burtica, S. Picken, J. Schoonman, Sensors 8, 5806–5819 (2008). https://doi.org/10.3390/s8095806
I.A.L. Ribeiro, S. Yotsumoto-neto, M.O.F. Goulart, F.S. Damos, J. Braz. Chem. Soc. 28, 1768–1778 (2017). https://doi.org/10.21577/0103-5053.20170030
J. Xu, P. Wang, R. Yu, Z. Zheng, S. Shoaib Ahmad Shah, C. Chen, Mater. Lett. 260, 126950 (2020). https://doi.org/10.1016/j.matlet.2019.126950
V.D. Nithya, N. Sabari Arul, J. Mater. Chem. A 4, 10767–10778 (2016). https://doi.org/10.1039/c6ta02582j
J. Wu, W. Wang, M. Wang, H. Liu, H. Pan, Int. J. Electrochem. Sci 11, 5165–5179 (2016). https://doi.org/10.20964/2016.06.55
R.M. Abdel Hameed, S. S. Medany, Int. J. Hydrogen Energy 44, 3636–3648 (2019). https://doi.org/10.1016/j.ijhydene.2018.12.079
M.E.G. Lyons, M.P. Brandon, J. Electroanal. Chem. 641, 119–130 (2010). https://doi.org/10.1016/j.jelechem.2009.11.024
E. Cossar, S.E. Houache, Z. Zhang, E.A. Baranova, J. Electroanal. Chem. 870, 114246 (2020). https://doi.org/10.1016/j.jelechem.2020.114246
D. Wang, W. Yan, S.H. Vijapur, G.G. Botte, J. Power Sources 217, 498–502 (2012). https://doi.org/10.1016/j.jpowsour.2012.06.029
S.A. Aladeemy, A.M. Al-Mayouf, M.S. Amer, N.H. Alotaibi, M.T. Weller, M.A. Ghanem, RSC Adv. 11, 3190–3201 (2021). https://doi.org/10.1039/d0ra10814f
M.Y. Elahi, M.F. Mousavi, S. Ghasemi, Electrochim. Acta 54, 490–498 (2008). https://doi.org/10.1016/j.electacta.2008.07.042
R.P. Forslund, J.T. Mefford, W.G. Hardin, C.T. Alexander, K.P. Johnston, K.J. Stevenson, ACS Catal. 6, 5044–5051 (2016). https://doi.org/10.1021/acscatal.6b00487
J. Liu, J. Sun, L. Gao, J. Phys. Chem. C 114, 19614–19620 (2010). https://doi.org/10.1021/jp1092042
K.L. Zhou, H. Wang, J.T. Jiu, J.B. Liu, H. Yan, K. Suganuma, Chem. Eng. J. 345, 290–299 (2018). https://doi.org/10.1016/j.cej.2018.03.175
S.H. Park, J.M. Jeong, S.J. Kim, K.H. Kim, S.H. Lee, N.H. Bae, K.G. Lee, B.G. Choi, A.C.S. Appl, Energy Mater. 3, 7746–7755 (2020). https://doi.org/10.1021/acsaem.0c01140
L. Hou, X. Zhi, W. Zhang, H. Zhou, J. Electroanal. Chem. 863, 114064 (2020). https://doi.org/10.1016/j.jelechem.2020.114064
Y.Y. Horng, Y.C. Lu, Y.K. Hsu, C.C. Chen, L.C. Chen, K.H. Chen, J. Power Sources 195, 4418–4422 (2010). https://doi.org/10.1016/j.jpowsour.2010.01.046
E. Armelin, R. Pla, F. Liesa, X. Ramis, J.I. Iribarren, C. Alemán, Corros. Sci. 50, 721–728 (2008). https://doi.org/10.1016/j.corsci.2007.10.006
S. Chen, Z. Wei, X. Qi, L. Dong, Y.G. Guo, L. Wan, Z. Shao, L. Li, J. Am. Chem. Soc. 134, 13252–13255 (2012). https://doi.org/10.1021/ja306501x
D.W. Wang, F. Li, J. Zhao, W. Ren, Z.G. Chen, J. Tan, Z.S. Wu, I. Gentle, G.Q. Lu, H.M. Cheng, ACS Nano 3, 1745–1752 (2009). https://doi.org/10.1021/nn900297m
H. Wei, J. Zhu, S. Wu, S. Wei, Z. Guo, Polymer (Guildf). 54, 1820–1831 (2013). https://doi.org/10.1016/j.polymer.2013.01.051