Insights into relationship between mechanical behavior and microstructure evolution of Sn-1.0Ag-0.5Cu-GNSs/Cu joint during thermal cycling

Jie Wu1, Guoqiang Huang2, Yiping Wu1, Xiwu Huang1, Rui Yu1, Xuqi Yang1, Guangyao Chen1, Yong Xu1,3
1College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing, China
2Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai, China
3Guangdong Greater Bay Area Institute of Integrated Circuit and System, Guangzhou, China

Tóm tắt

With electronic devices progressing into more miniaturized and intelligent, thermal cycling reliability of solder joint has always been an issue in high-density advanced packaging. In this study, minor amount of graphene nanosheets (GNSs) was added into Sn-1.0Ag-0.5Cu solder in order to enhance its thermal cycling reliability. Detailed relationship between mechanical behavior and microstructure evolution of the Sn-1.0Ag-0.5Cu and Sn-1.0Ag-0.5Cu-GNSs solder joints was investigated. Experimental results indicated that Sn-1.0Ag-0.5Cu-GNSs had a lower decrease rate in shear force during thermal cycling when compared to the non-modified. This is due to a slower coarsening of microstructure and inhibited growth of interfacial IMCs. Theoretical analysis showed that with the addition of GNSs, the average growth coefficients of total interfacial IMCs (DT) was decreased from 8.6 × 10–11 to 6.7 × 10–11 cm2/h, respectively. This decrease in the average values of DT were mainly attributed to the pinning effect of GNSs on the the interfacial IMC growth during TC treatment. In addition, fracture mode of solder joints were also a good response to the mechanical change during thermal cycling treatment.

Tài liệu tham khảo

J. Kang, W.U. Hanming, H. Wang, Development trend of integrated circuit manufacturing in the post-Moore Era and the current situation of China’s integrated circuit industry. Micro/Nano Electron. Intell. Manuf. 1, 57 (2019) B. Ahn, Emerging interconnection technology and Pb-free solder materials for advanced microelectronic packaging. Metals. 12, 1941 (2021) D.M. Liu, T.Y. Kuo, Y.W. Liu et al., Investigation of low temperature Cu-Cu direct bonding with Pt passivation layer in 3D integration. IEEE Trans. Comp. Packag. Technol. 11, 573 (2021) H. Gong, Y. Yao, Y.T. Yang, Size effect on the fracture of sintered porous nano-silver joints: experiments and Weibull analysis. J. Alloys Compd. 3, 158611 (2021) M. Rabelo, M.A. Zahid, K. Agrawal et al., Analysis of solder joint degradation and output power drop in silicon photovoltaic modules for reliability improvement. Microelectron. Reliab. 127, 114399 (2021) W.A. Siswanto, M. Arun, I.V. Krasnopevtseva et al., A competition between stress triaxiality and joule heating on microstructure evolution and degradation of SnAgCu solder joints. J. Manuf. Process. 54, 221 (2020) Y. Li, Z. Lu, Y.C. Zhang et al., Microstructure, IMCs layer and reliability of Sn-58Bi solder joint reinforced by Mo nanoparticles during thermal cycling. Mater. Character. 148, 280 (2019) J.H. Wang, S.B. Xue, L. Liu et al., Three-dimensional interface and property of SnPb solder joint under extreme thermal shocking. Sci. Technol. Weld. Join 27, 186 (2022) G. Menezes, V. Smet, M. Kobayashi, et al. Large low-CTE glass package-to-PCB interconnections with solder strain-relief using polymer collars[C]. Electronic Components & Technology Conference. IEEE (2014). T.H. Gu, Y.L. Xu, C.M. Gourlay et al., In-situ electron backscatter diffraction of thermal cycling in a single grain Cu/Sn-3Ag-0.5Cu/Cu solder joint. Scripta Mater. 175, 55 (2019) Q.R. Zhang, M. Zhang, C. Gamanayake et al., Deep learning based solder joint defect detection on industrial printed circuit board X-ray images. Complex Intell. Syst. 8, 1525 (2022) J.H. Wang, X. Liu, F. Huo et al., Novel transient liquid phase bonding method using In-coated Cu sheet for high-temperature die attach. Mater. Res. Bull. 149, 111713 (2022) L. Zhang, K.N. Tu, Structure and properties of lead-free solders bearing micro and nano paricles. Mater. Sci. Eng. R Rep. 82, 1 (2014) S. Zhang, H.Y. Zhao, H.B. Xu et al., Accelerative reliability tests for Sn3.0Ag0.5Cu solder joints under thermal cycling coupling with current stressing. Microelectron. Reliab. 8, 114094 (2021) M.L. Li, L.L. Gao, L. Zhang et al., Interfacial evolution of pure Sn solder bearing silicon carbide nanowires under isothermal aging and thermal cycling. J. Mater. Res. Technol. 15, 3974 (2021) Y. Wang, Microstructure, wetting property of Sn-Ag-Cu-Bi-xCe solder and IMC growth at solder/Cu interface during thermal cycling. Rare Met. 40, 714 (2021) D.A. Shnawah, M. Sabri, I.A. Badruddin, A review on thermal cycling and drop impact reliability of SAC solder joint in portable electronic products. Microelectron. Reliab. 52, 90 (2012) X.C. Zhao, Y.N. Wen, Y. Li et al., Effect of γ-Fe2O3 nanoparticles size on the properties of Sn-1.0Ag-0.5Cu nano-composite solders and joints. J. Alloys Compd. 662, 272 (2016) S. Tikale, K.N. Prabhu, Performance and reliability of Al2O3 nanoparticles doped multicomponent Sn-3.0Ag-0.5Cu-Ni-Ge solder alloy. Microelectron. Reliab. 113, 113933 (2020) L.Y. Xu, L.X. Wang, H.Y. Jing et al., Effects of graphene nanosheets on interfacial reaction of Sn-Ag-Cu solder joints. J. Alloys Compd. 650, 475 (2015) A. Fawzy, S.A. Fayek, M. Sobhy et al., Tensile creep characteristics of Sn-3.5Ag-0.5Cu (SAC355) solder reinforced with nano-metric ZnO particles. Mater. Sci. Eng. A. 603, 1 (2014) K.S. Novoselov, A.K. Geim, S. Morozoy et al., Electric field effect in atomically thin carbon film. Sci. 306, 666 (2004) S.M.L. Nai, J. Wei, M. Gupta, Improving the performance of lead-free solder reinforced with multi-walled carbon nanotubes. Mater. Sci. Eng. A. 423, 1 (2006) K.M. Kumar, V. Kripesh, A.A.O. Tay, Single-wall carbon nanotube (SWCNT) functionalized Sn-Ag-Cu lead-free composite solders. J. Alloys Compd. 450, 1 (2008) Y. Yang, J.N. Balaraju, Y. Huang et al., Interface reaction between an electroless Ni-Co-P metallization and Sn-3.5Ag lead-free solder with improved joint reliability. Acta Mater. 71, 69 (2014) L. Zhang, Z.Q. Liu, Inhibition of intermetallic compounds growth at Sn-58Bi/Cu interface bearing CuZnAl memory particles (2–6μm). J. Mater. Sci. Mater. Electron. 31, 2466–2480 (2020)