Insight into the limited electrochemical activity of NaVP<sub>2</sub>O<sub>7</sub>

RSC Advances - Tập 5 Số 80 - Trang 64991-64996
Yongho Kee1,2,3,4, Nikolay Dimov5,2,3,4, Aleksandar Staikov6,7,2,4, Prabeer Barpanda8,9,2,3,4, Ying-Ching Lu1,2,3,4, Keita Minami10,2,11,12, Shigeto Okada5,2,3,4
1Interdisciplinary Graduate School of Engineering Sciences
2Japan
3Kasuga 816-8580
4Kyushu University
5Institute for Materials Chemistry and Engineering, Kyushu University, 6-1, Kasuga Koen, Kasuga, 816-8580, Japan
6Fukuoka
7International Institute for Carbon-neutral Energy Research (WP1-12CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, Japan
8Faraday Materials Laboratory, Materials Research Centre (MRC), Indian Institute of Science, C.V. Raman Avenue,Bangalore 560012,India
9Institute for Materials Chemistry and Engineering, Kyushu University, 6-1, Kasuga-koen, Kasuga 816-8580, Japan
10Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520, Japan
11Kyoto 615-8520
12Kyoto University

Tóm tắt

Recently, LiVP2O7 has been investigated as a possible high-voltage substitute for Li2FeP2O7.

Từ khóa


Tài liệu tham khảo

Zhang, 2014, Electrochim. Acta, 133, 1, 10.1016/j.electacta.2014.03.188

Sanchez, 2006, Solid State Ionics, 177, 497, 10.1016/j.ssi.2005.11.018

Cui, 2010, J. Alloys Compd., 490, 236, 10.1016/j.jallcom.2009.09.165

Kee, 2015, Solid State Ionics, 272, 138, 10.1016/j.ssi.2015.01.006

Uebou, 2002, Solid State Ionics, 148, 323, 10.1016/S0167-2738(02)00069-3

Qu, 2013, Mater. Lett., 108, 1, 10.1016/j.matlet.2013.06.072

Tan, 2015, J. Power Sources, 275, 6, 10.1016/j.jpowsour.2014.10.178

Zhang, 2013, Electrochim. Acta, 107, 406, 10.1016/j.electacta.2013.06.064

Kee, 2015, Electrochim. Acta, 174, 516, 10.1016/j.electacta.2015.06.032

Jian, 2012, Electrochem. Commun., 14, 86, 10.1016/j.elecom.2011.11.009

Zhu, 2013, Nanoscale, 5, 780, 10.1039/C2NR32758A

Clark, 2014, J. Mater. Chem. A, 2, 11807, 10.1039/C4TA02383H

Ong, 2011, Energy Environ. Sci., 4, 3680, 10.1039/c1ee01782a

Barpanda, 2012, Adv. Energy Mater., 2, 841, 10.1002/aenm.201100772

Deng, 2015, Nanoscale, 7, 487, 10.1039/C4NR05175K

Deng, 2014, Nano Energy, 4, 49, 10.1016/j.nanoen.2013.12.014

Park, 2011, J. Electrochem. Soc., 158, A1067, 10.1149/1.3611434

Nishimura, 2010, J. Am. Chem. Soc., 132, 13596, 10.1021/ja106297a

Barpanda, 2012, J. Mater. Chem., 22, 13455, 10.1039/c2jm32566g

Barker, 2005, Electrochem. Solid-State Lett., 8, A446, 10.1149/1.1979347

Wang, 1989, Acta Crystallogr., 45, 1417

Kresse, 1996, Phys. Rev. B: Condens. Matter Mater. Phys., 54, 11169, 10.1103/PhysRevB.54.11169

Kresse, 1999, Phys. Rev. B: Condens. Matter Mater. Phys., 59, 1758, 10.1103/PhysRevB.59.1758

Henkelman, 2000, J. Chem. Phys., 113, 9901, 10.1063/1.1329672

Leclaire, 1988, J. Solid State Chem., 76, 131, 10.1016/0022-4596(88)90200-9

Leclaire, 1988, J. Solid State Chem., 77, 299, 10.1016/0022-4596(88)90252-6

Rousse, 2001, Int. J. Inorg. Mater., 3, 881, 10.1016/S1466-6049(01)00092-7

Barpanda, 2012, Electrochem. Commun., 24, 116, 10.1016/j.elecom.2012.08.028

Barpanda, 2013, J. Mater. Chem. A, 1, 4194, 10.1039/c3ta10210f

Meethong, 2007, Electrochem. Solid-State Lett., 10, A134, 10.1149/1.2710960

Kobayashi, 2009, Adv. Funct. Mater., 19, 395, 10.1002/adfm.200801522

Meethong, 2007, Adv. Funct. Mater., 17, 1115, 10.1002/adfm.200600938

Majjane, 2014, Mater. Chem. Phys., 143, 779, 10.1016/j.matchemphys.2013.10.013

Zhou, 2011, Chem. Mater., 23, 293, 10.1021/cm102922q

Attidekou, 2004, Solid State Ionics, 175, 185, 10.1016/j.ssi.2003.12.048

Barpanda, 2013, Chem. Mater., 25, 3480, 10.1021/cm401657c