Insensitizing controls with one vanishing component for the Navier–Stokes system

Journal de Mathématiques Pures et Appliquées - Tập 101 - Trang 27-53 - 2014
N. Carreño1, M. Gueye1
1Université Pierre et Marie Curie, UMR 7598, Laboratoire Jacques-Louis Lions, F-75005, Paris, France

Tài liệu tham khảo

Alekseev, 1987, Optimal Control, 10.1007/978-1-4615-7551-1 Bodart, 1995, Controls insensitizing the norm of the solution of a semilinear heat equation, J. Math. Anal. Appl., 195, 658, 10.1006/jmaa.1995.1382 Carreño, 2012, Local controllability of the N-dimensional Boussinesq system with N−1 scalar controls in an arbitrary control domain, Math. Control Relat. Fields, 2, 361, 10.3934/mcrf.2012.2.361 N. Carreño, S. Guerrero, Local null controllability of the N-dimensional Navier–Stokes system with N−1 scalar controls in an arbitrary control domain, J. Math. Fluid Mech., in press. Coron, 2009, Null controllability of the N-dimensional Stokes system with N−1 scalar controls, J. Differential Equations, 246, 2908, 10.1016/j.jde.2008.10.019 Coron, 2009, Local null controllability of the two-dimensional Navier–Stokes system in the torus with a control force having a vanishing component, J. Math. Pures Appl. (9), 92, 528, 10.1016/j.matpur.2009.05.015 Fernández-Cara, 2004, Local exact controllability of the Navier–Stokes system, J. Math. Pures Appl. (9), 83, 1501, 10.1016/j.matpur.2004.02.010 Fernández-Cara, 2006, Some controllability results for the N-dimensional Navier–Stokes and Boussinesq systems with N−1 scalar controls, SIAM J. Control Optim., 45, 146, 10.1137/04061965X Fursikov, 1996, Controllability of Evolution Equations, vol. 34 Guerrero, 2007, Null controllability of some systems of two parabolic equations with one control force, SIAM J. Control Optim., 46, 379, 10.1137/060653135 Guerrero, 2007, Controllability of systems of Stokes equations with one control force: existence of insensitizing controls, Ann. Inst. H. Poincaré Anal. Non Linéaire, 24, 1029, 10.1016/j.anihpc.2006.11.001 M. Gueye, Insensitizing controls for the Navier–Stokes equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, in press. Imanuvilov, 2001, Remarks on exact controllability for the Navier–Stokes equation, ESAIM Control Optim. Calc. Var., 6, 39, 10.1051/cocv:2001103 Imanuvilov, 2009, Carleman estimates for parabolic equations with nonhomogeneous boundary conditions, Chin. Ann. Math. Ser. B, 30, 333, 10.1007/s11401-008-0280-x Ladyzenskaya, 1963 Lions, 1990, Quelques notions dans lʼanalyse et le contrôle de systèmes à données incomplètes, 43 Lions, 1992, Sentinelles pour les systèmes distribués à données incomplètes, vol. 21 Lions, 1968, Problèmes aux limites non homogènes et applications, vol. 2, vol. 18 Micu, 2004, An example of ε-insensitizing controls for the heat equation with no intersecting observation and control regions, Appl. Math. Lett., 17, 927, 10.1016/j.aml.2003.10.006 Temam, 1977, Navier–Stokes Equations, Theory and Numerical Analysis, vol. 2 Temam, 1982, Behaviour at time t=0 of the solutions of semilinear evolution equations, J. Differential Equations, 43, 73, 10.1016/0022-0396(82)90075-4 de Teresa, 2000, Insensitizing controls for a semilinear heat equation, Comm. Partial Differential Equations, 25, 39, 10.1080/03605300008821507 de Teresa, 2010, Unique continuation principle for systems of parabolic equations, ESAIM Control Optim. Calc. Var., 16, 247, 10.1051/cocv/2008077