Insecticide‐induced hormesis and arthropod pest management

Pest Management Science - Tập 70 Số 5 - Trang 690-697 - 2014
R. N. C. Guedes1, G. Christopher Cutler2
1Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, Brazil
2Department of Environmental Sciences, Agricultural Campus; Dalhousie University; Truro (NS) Canada

Tóm tắt

Abstract

Ecological backlashes such as insecticide resistance, resurgence and secondary pest outbreaks are frequent problems associated with insecticide use against arthropod pest species. The last two have been particularly important in sparking interest in the phenomenon of insecticide‐induced hormesis within entomology and acarology. Hormesis describes a biphasic dose–response relationship that is characterized by a reversal of response between low and high doses of a stressor (e.g. insecticides). Although the concept of insecticide‐induced hormesis often does not receive sufficient attention, or has been subject to semantic confusion, it has been reported in many arthropod pest species and natural enemies, and has been linked to pest outbreaks and potential problems with insecticide resistance. The study of hormesis remains largely neglected in entomology and acarology. Here, we examined the concept of insecticide‐induced hormesis in arthropods, its functional basis and potential fitness consequences, and its importance in arthropod pest management and other areas. © 2013 Society of Chemical Industry

Từ khóa


Tài liệu tham khảo

10.1016/j.drudis.2006.04.012

10.1177/1091581810363012

Jacobi J, 1995, Paracelsus: Selected Writings

10.1007/BF01669373

10.5962/bhl.title.114812

10.1191/096032700678815594

10.1007/978-1-60761-495-1_2

Southam CM, 1943, Effects of extract of Western red‐cedar heartwood on certain wood‐decaying fungi in culture, Phytopathology, 33, 517

10.1080/109158197226874

10.1080/10807039709383710

10.1093/toxsci/62.2.330

10.1146/annurev.publhealth.22.1.15

10.1016/j.taap.2004.06.023

10.1007/s10646-012-1022-0

10.2203/dose-response.12-008.Cutler

10.1111/j.1461-0248.2010.01531.x

10.1093/jee/61.1.7

10.1016/j.pestbp.2005.09.002

10.1603/029.102.0124

10.1191/096032798678908738

10.1007/978-1-4020-6359-6_1389

10.1111/j.1365-3180.2011.00862.x

10.1016/j.pestbp.2010.06.013

10.1080/713611037

10.1289/ehp.7811

10.1289/ehp.9619

10.1016/j.arr.2007.03.002

Mattson MP, 2010, Hormesis: A Revolution in Biology, Toxicology and Medicine, 1, 10.1007/978-1-60761-495-1

10.2203/dose-response.09-014.Vaiserman

Stebbing ARD, 1997, A theory of growth hormesis, BELLE Newsl, 6, 1

10.1046/j.1365-2435.2000.00392.x

10.1002/(SICI)1099-1263(200003/04)20:2<93::AID-JAT640>3.0.CO;2-7

10.1080/10807030009380064

10.1006/eesa.1998.1729

Sibly RM, 1986, Physiological Ecology of Animals – An Evolutionary Approach

10.1191/0960327105ht551oa

Milsum JH, 1966, Biological Control Systems Analysis

10.1191/0960327102ht217oa

10.1016/0742-8413(91)90110-F

10.1111/j.1365-3032.1994.tb01070.x

10.1016/S1095-6433(98)10003-X

10.1111/j.1469-185X.1999.tb00182.x

10.1016/S0169-5347(00)01929-7

10.1111/j.1365-3032.2005.00479.x

10.1371/journal.pone.0074532

10.1021/es0352348

Vilca Mallqui KS, Azadirachtin‐mediated shift in fecundity–longevity trade‐off in the Mexican bean beetle Zabrotes subfasciatus, J Econ Entomol

10.1111/j.1558-5646.2007.00151.x

10.1111/j.1439-0418.2009.01462.x

10.1016/j.chemosphere.2013.06.030

10.1016/0883-2889(90)90063-M

10.1086/420541

10.1080/10408440802026422

10.1007/978-1-60761-495-1_3

10.1146/annurev.ento.52.110405.091440

10.1146/annurev.en.01.010156.002155

10.1093/aesa/48.1-2.35

10.1093/jee/49.3.310

10.2307/4589519

10.1093/jee/50.4.490

10.1093/jee/51.5.579

10.1111/j.1570-7458.1958.tb00018.x

10.1093/jee/59.2.249

10.1093/ee/3.3.534

10.1093/jee/50.2.221a

10.1093/jee/59.5.1181

10.1093/jee/60.4.1177

10.1093/jee/76.1.200

10.1093/jee/77.4.876

10.1590/S1519-566X2002000300015

10.1016/S0261-2194(03)00094-2

Croft BA, 1990, Arthropod Biological Control Agents and Pesticides

Gil LI, 2010, Insect Control: Biological and Synthetic Agents

Szczepaniec A, 2012, Effects of imidacloprid on spider mite (Acari: Tetranychidae) abundance and associated injury to boxwoods, Arboric Urban For, 38, 37, 10.48044/jauf.2012.007

10.1007/s10493-012-9614-1

10.1146/annurev-ento-120811-153645

Duke SO, 2006, Hormesis: is it an important factor in herbicide use and allelopathy?, Outlooks Pest Manag, 17, 29

10.2203/dose-response.06-008.Cedergreen

10.1016/j.cropro.2007.03.022

10.1016/j.cropro.2007.11.018

10.1584/jpestics.29.299

10.1016/j.cropro.2007.10.013

10.4039/Ent8167-3

10.1146/annurev.en.25.010180.001251

10.1016/0261-2194(95)91106-P

10.1007/978-1-4615-6528-4_1

Pedigo LP, 1989, Entomology and Pest Management

DeBach P, 1991, Biological Control by Natural Enemies

10.1146/annurev.es.03.110172.001025

10.1126/science.231.4743.1255

10.1079/9781845933531.0000

10.1073/pnas.1307656110

10.1002/ps.3542

10.1303/aez.33.435

Veloso RVS, 2012, Proteômica Diferencial em Populações de Sitophilus zeamais (Motschulsky, Coleoptera: Curculionidae) mediante expressão do fenômeno hormese

10.1146/annurev.en.29.010184.000443

10.2307/3495393

10.1007/BF01955163

Vaiserman AM, 2011, Hormesis and epigenetics: is there a link?, Ageing Res Rev, 10, 413

10.1093/ee/9.6.773

10.1093/jee/79.6.1530

10.1093/jee/84.4.1169

10.1016/j.scitotenv.2008.06.008

10.1371/journal.pone.0020018

10.1002/(SICI)1099-1263(200003/04)20:2<147::AID-JAT646>3.0.CO;2-G

10.1259/bjr/63353075

10.1007/s10522-010-9298-z

10.1242/jeb.065631

10.1111/eva.12001