Insecticidal features displayed by the beneficial rhizobacterium Pseudomonas chlororaphis PCL1606

International Microbiology - Tập 25 - Trang 679-689 - 2022
Eva Arrebola1,2, Francesca R. Aprile1,2, Claudia E. Calderón1,2, Antonio de Vicente1,2, Francisco M. Cazorla1,2
1Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
2Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Consejo Superior de Investigaciones Científicas, Universidad de Málaga IHSM-UMA-CSIC, Málaga, Spain

Tóm tắt

The biocontrol rhizobacterium Pseudomonas chlororaphis is one of the bacterial species of the P. fluorescens group where insecticide fit genes have been found. Fit toxin, supported with other antimicrobial compounds, gives the bacterial the ability to repel and to fight against eukaryotic organisms, such as nematodes and insect larvae, thus protecting the plant host and itself. Pseudomonas chlororaphis PCL1606 is an antagonistic rhizobacterium isolated from avocado roots and show efficient biocontrol against fungal soil-borne disease. The main antimicrobial compound produced by P. chlororaphis PCL606 is 2-hexyl-5-propyl resorcinol (HPR), which plays a crucial role in effective biocontrol against fungal pathogens. Further analysis of the P. chlororaphis PCL1606 genome showed the presence of hydrogen cyanide (HCN), pyrrolnitrin (PRN), and homologous fit genes. To test the insecticidal activity and to determine the bases for such activity, single and double mutants on the biosynthetic genes of these four compounds were tested in a Galleria mellonella larval model using inoculation by injection. The results revealed that Fit toxin and HPR in combination are involved in the insecticide phenotype of P. chlororaphis PCL1606, and additional compounds such as HCN and PRN could be considered supporting compounds.

Tài liệu tham khảo

Allegra E, Titball RW, Carter J, Champion OL (2018) Galleria mellonella larvae allow the discrimination of toxic and non-toxic chemicals. Chemosphere 198:469–472. https://doi.org/10.1016/j.chemosphere.2018.01.175 Andrea A, Krogfelt KA, Jenssen H (2019) Methods and challenges of using the greater wax moth (Galleria mellonella) as a model organism in antimicrobial compound discovery. Microorganisms 7(3):85. https://doi.org/10.3390/microorganisms7030085 Arrebola E, Carrión VJ, Cazorla FM, Pérez-García A, Murillo J, de Vicente A (2012) Characterization of the mgo operon in Pseudomonas syringae pv. syringae UMAF0158 that is required for mangotoxin production. BMC Microbiol 12:2–17. http://www.biomedcentral.com/1471-2180/12/10 Arrebola E, Tienda S, Vida C, de Vicente A, Cazorla FM (2019) Fitness features involved in the biocontrol interaction of Pseudomonas chlororaphis with host plants: the case study of PcPCL1606. Front Microbiol 10:719. https://doi.org/10.3389/fmicb.2019.00719 Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (1995) Current protocols in molecular biology. Wiley, New York Bjørnlund L, Rønn R, Péchy-Tarr M, Maurhofer M, Keel C, Nybroe O (2009) Functional GacS in Pseudomonas DSS73 prevents digestion by Caenorhabditis elegans and protects the nematode from killer flagellates. ISME J 3:770–779. https://doi.org/10.1038/ismej.2009.28 Brameyer S, Kresovic D, Bode HB, Heermann R (2015) Dialkylresorcinols as bacterial signaling molecules. PNAS 112(2):572–577. https://www.pnas.org/cgi/doi/10.1073/pnas.1417685112 Burges HD (1976) Techniques for the bioassay of Bacillus thuringiensis with Galleria mellonella. Entomol Exp Appl 19(3):243–254. https://doi.org/10.1111/j.1570-7458.1976.tb02604.x Calderón CE, Pérez-García A, de Vicente A, Cazorla FM (2013) The dar genes of Pseudomonas chlororaphis PCL1606 are crucial for biocontrol activity via production of the antifungal compound 2-hexyl, 5-propyl resorcinol. Mol Plant-Microbe Interact 26(5):554–565. https://doi.org/10.1094/MPMI-01-13-0012-R Calderón CE, de Vicente A, Cazorla FM (2014) Role of 2-hexyl, 5-propyl resorcinol production by Pseudomonas chlororaphis PCL1606 in the multitrophic interaction in the avocado rhizosphere during the biocontrol process. FEMS Microbiol Ecol 89:20–31. https://doi.org/10.1111/1574-6941.12319 Calderón CE, Ramos C, de Vicente A, Cazorla FM (2015) Comparative genomes analysis of Pseudomonas chlororaphis PCL1606 reveals new insight into antifungal compounds involved in biocontrol. Mol Plant-Microbe Interact 28(3):249–260. https://doi.org/10.1094/MPMI-10-14-0326-FI Calderón CE, Tienda S, Heredia-Ponce Z, Arrebola E, Cárcamo-Oyarce G, Eberl L, Cazorla FM (2019) The compound 2-hexyl, 5-propyl resorcinol has a key role in biofilm formation by the biocontrol rhizobacterium Pseudomonas chlororaphis PCL1606. Front Microbiol 10:396. https://doi.org/10.3389/fmicb.2019.00396 Cazorla FM, Duckett S, Bergstrom E, Noreen S, Odijk R, Lugtenberg BJJ, Thomas-Oates J, Bloemberg GV (2006) Biocontrol of avocado Dematophora root rot by antagonistic Pseudomonas fluorescens PCL1606 correlates with the production of 2-hexyl, 5-propyl resorcinol. Mol Plant-Microbe Interact 19(4):418–428. https://doi.org/10.1094/MPMI-19-0418 Choi KH, Kumar A, Schweizer HP (2006) A 10-min method for preparation of highly electrocompetent Pseudomonas aeruginosa cells: application for DNA fragment transfer between chromosomes and plasmid transformation. J Microbiol Methods 64:391–397. https://doi.org/10.1016/j.mimet.2005.06.001 Durieux MF, Melloul É, Jemel S, Roisin L, Dardé ML, Guillot J, Dannaoui É, Botterel F (2021) Galleria mellonella as a screening tool to study virulence factors of Aspergillus fumigatus. Virulence 12(1):818–834. https://doi.org/10.1080/21505594.2021.1893945 Esposti MD, Romero EM (2017) The functional microbe of arthropods. PLoS One 12(5):e0176573. https://doi.org/10.1371/journal.pone.0176573 Flury P, Aellen N, Ruffner B, Péchy-Tarr M, Fataar S, Metla Z, Dominguez-Ferreras A, Bloemberg G, Frey J, Goesmann A, Raaijmakers JM, Duffy B, Höfte M, Blom J, Smits TH, Keel C, Maurhofer M (2016) Insect pathogenicity in plant-beneficial pseudomonads: phylogenetic distribution and comparative genomics. ISME J 10(10):2527–2542. https://doi.org/10.1038/ismej.2016.5 Flury P, Vesga P, Péchy-Tarr M, Aellen N, Dennet F, Hofer N, Kupferschmied KP, Kupferschmied P, Metla Z, Ma Z, Siegfried S, de Weert S, Bloemberg G, Höfte M, Keel CJ, Maurhofer M (2017) Antimicrobial and insecticidal: cyclic lipopeptides and hydrogen cyanide produced by plant-beneficial Pseudomonas strains CHA0, CMR12a, and PCL1391 contribute to insect killing. Front Microbiol 8:100. https://doi.org/10.3389/fmicb.2017.00100 Flury P, Vesga P, DominguezFerreras A, Tinguely C, Ullrich CI, Kleespies RC, Keel C, Maurhofer M (2019) Persistence of root-colonizing Pseudomonas protegens in herbivorous insects throughout different developmental stages and dispersal to new host plants. ISME J 13:860–872. https://doi.org/10.1038/s41396-018-0317-4 Gross H, Loper JE (2009) Genomics of secondary metabolite production by Pseudomonas spp. Nat Prod Rep 26:1408–1446. https://doi.org/10.1039/b817075b Haas D, Keel C (2003) Regulation of antibiotic production in root colonizing Pseudomonas spp. and relevance for biological control of plant disease. Annu Rev Phytopathol 41:117–153. https://doi.org/10.1146/annurev.phyto.41.052002.095656 Hapeshi A, Waterfield NR (2016) Photorhabdus asymbiotica as an insect and human pathogen. Curr Top Microbiol Inmunol 402:159–177. https://doi.org/10.1007/82_2016_29 Hill DS, Stein JI, Torkewitz NR, Morse AM, Howell CR, Pachlatko JP, Becker JO, Ligon JM (1994) Cloning of genes involved in the synthesis of pyrrolnitrin from Pseudomonas fluorescens and role of pyrrolnitrin synthesis in biological control of plant disease. App Environm Microbiol 60(1):78–85 Howell CR, Stipanovic RD (1979) Control of Rhizoctonia solani in cotton seedlings with Pseudomonas fluorescens and with an antibiotic produced by the bacterium. Phytopathology 69:480–482 Ignasiak K, Maxwell A (2017) Galleria mellonella (greater wax moth) larvae as a model for antibiotic susceptibility testing and acute toxicity trials. BMC Res Notes 10(1):428. https://doi.org/10.1186/s13104-017-2757-8 Jang YJ, Yang SY, Kim YC, Lee CW, Park MS, Kim JC, Kim IS (2013) Identification of orfamide A as an insecticidal metabolite produced by Pseudomonas protegens F6. J Agr Food Chem 61:6786–6791. https://doi.org/10.1021/jf401218w Jousset A, Rochat L, Péchy-Tarr M, Keel C, Scheu S, Bonkowski M (2009) Predators promote defense of rhizosphere bacterial population by selective feeding on non-toxic cheaters. ISME J 3:666–674. https://doi.org/10.1038/ismej.2009.26 Kamle M, Borah R, Bora H, Jaiswal AK, Singh RK, Kumar P (2020) Systemic acquired resistance (SAR) and induced systemic resistance (ISR): role and mechanism of action against phytopathogens. In: Hesham AL, Upadhyay R, Sharma G, Manoharachary C, Gupta V (eds) Fungal Biotechnology and Bioengineering. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-41870-0_20 Kanda N, Ishizaki N, Inoue N, Oshima M, Handa A (1975) DB-2073, a new alkylresorcinol antibiotic. I. Taxonomy, isolation and characterization. J Antibiot (Tokyo) 28(12):935–42. https://doi.org/10.7164/antibiotics.28.935 Kang BR, Anderson AJ, Kim YC (2019) Hydrogen cyanide produced by Pseudomonas chlororaphis 06 is a key aphicidal metabolite. Can J Microbiol 65:185–190. https://doi.org/10.1139/cjm-2018-0372 King EO, Ward MK, Raney DE (1954) Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med 44(2):301–307 Kupferschmied P, Maurhofer M, Keel C (2013) Promise for plant pest control: root-associated pseudomonads with insecticidal activities. Front Plant Sci 4:287. https://doi.org/10.3389/fpls.2013.00287 Lee JH, Ma KC (2011) Nematicidal activity of a nonpathogenic biocontrol bacterium, Pseudomonas chlororaphis O6. Curr Microbiol 62:746–751. https://doi.org/10.1007/s00284-010-9779-y Lim CK, Hassan KA, Penesyan A, Loper JE, Paulsen IT (2013) The effect of zinc limitation on the transcriptome of Pseudomonas protegens Pf-5. Environ Microbiol 15(3):702–715. https://doi.org/10.1111/j.1462-2920.2012.02849.x Loper JE, Hassan KA, Mavrodi DV, Davis EW 2nd, Lim CK, Shaffer BT et al (2012) Comparative genomics of plants associated Pseudomonas spp. insights into diversity and inheritance of traits involved in multitrophic interactions. PLoS Genet 8(7):e10027834. https://doi.org/10.1371/journal.pgen.1002784 Martín-Pérez R, Romero DF, Bonilla N, Pérez-García A, de Vicente A, Cazorla FM (2007) Identification of genes involved in the production of antibiotic 2-hexyl, 5-propyl resorcinol and its role in biocontrol. In: Lorito M, Scala F, Woo S, Ruocco M, Capodilupo C, Zoina A (eds) XIII International Congress on Molecular Plant-Microbe Interaction.Proceding Book, Edizioni Ziino, Sorrento, Italy, pp 220 Nandi M, Selin C, Brassinga AKC, Belmonte ML, Fernando WGD, Loewen PC, de Kievit TR (2015) Pyrrolnitrin and hydrogencyanide production by Pseudomonas chlororaphis strain PA23 exhibits nematicidal and repellent activity against Caenorhabditis elegans. PLoS One 10(4):e0123184. https://doi.org/10.1371/journal.pone.0123184 Nowak-Thompson B, Hammer PE, Hill DS, Stafford J, Torkewitz N, Gaffney TD, Lam ST, Molnár I, Ligon JM (2003) 2,5-Dialkylresorcinol biosynthesis in Pseudomonas aurantiaca: novel head-to-head condensation of two fatty acid-derived precursors. J Bacteriol 185(3):860–869. https://doi.org/10.1128/JB.185.3.860-869.2003 Péchy-Tarr M, Bruck DJ, Maurhofer M, Fischer E, Vogne C, Henkels MD, Donahue KM, Grunder J, Loper JE, Keel CJ (2008) Molecular analysis of a novel gene cluster encoding an insect toxin in plant-associated strains of Pseudomonas fluorescens. Environ Microbiol 10(9):2368–2386. https://doi.org/10.1111/j.1462-2920.2008.01662.x Péchy-Tarr M, Borel N, Kupferschmied P, Turner V, Binggeli O, Radovanovic D, Maurhofer M, Keel C (2013) Control and host-dependent activation of insect toxin expression in a root-associated biocontrol pseudomonad. Environ Microbiol 15(3):736–750. https://doi.org/10.1111/1462-2920.12050 Pintado A, Pérez-Martínez I, Aragón IM, Gutiérrez-Barranquero JA, de Vicente A, Cazorla FM, Ramos C (2021) The rhizobacterium Pseudomonas alcaligenes AVO110 induces the expression of biofilm-related genes in response to Rosellinia necatrix exudates. Microorganims 9:1388. https://doi.org/10.3390/microorganisms9071388 Pliego C, Cazorla FM, González-Sánchez MA, Pérez-Jiménez RM, de Vicente A, Ramos C (2007) Selection for biocontrol bacteria antagonistic toward Rosellinia necatrix by enrichment of competitive avocado root tip colonizers. Res Microbiol 158:463–470. https://doi.org/10.1016/j.resmic.2007.02.011 Quandt J, Hynes MF (1993) Versatile suicide vectors which allow direct selection for gene replacement in gram-negative bacteria. Gene 15:15–21 Raaijmakers JM, Mazzola M (2012) Diversity and natural fuctions of antibiotics produced by beneficial and plant pathogenic bacteria. Annu Rev Phytopathol 50:403–424. https://doi.org/10.1146/annurev-phyto-081211-172908 Rochat L, Péchy-Tarr M, Baehler E, Maurhofer M, Keel C (2010) Combination of fluorescent reporters for simultaneous monitoring of root colonization and antifungal gene expression by a biocontrol pseudomonad on cereals with flow cytometry. Mol Plant-Microbe Interact 23:949–961. https://doi.org/10.1094/MPMI-23-7-0949 Rose MM, Scheer D, Hou Y, Hotter VS, Komor AJ, Aiyar P, Scherlach K, Vergara F, Yan Q, Loper JE, Jakob T, van Dam NM, Sasso S (2021) The bacterium Pseudomonas protegens antagonizes the microalga Chlamydomonas reinhardtii using a blend of toxins. Environ Microbiol 23(9):5525–5540. https://doi.org/10.1111/1462-2920.15700 Ruffner B, Péchy-Tarr M, Höfte M, Bloemberg G, Grunder J, Keel C, Maurhofer M (2015) Evolutionary patchwork of an insecticidal toxin shared between plant-associated pseudomonads and the insect pathogens Photorhabdus and Xenorhabdus. BMC Genomics 16:609. https://doi.org/10.1186/s12864-015-1763-2 Saraf M, Rajkumar S, Saha T (2011) Perspectives of PGPR in agri-ecosystems. In: Maheshwari DK (ed) Bacteria in agrobiology: crop ecosystems. Springer, Berlin, Heidelberg, p 361–385. https://doi.org/10.1007/978-3-642-18357-7-1 Schellenberges U, Oral J, Rosen BA, Wei JZ, Zhu G, Xie W, McDonald MJ, Cerf DC, Diehn SH, Crane VC, Sandahl G, Zhao JZ, Nowatzki TM, Sethi A, Liu L, Pan Z, Wang Y, Lu AL, Liu L (2016) A selective insecticidal protein from Pseudomonas for controlling corn rootworms. Plant Sci 354(6312):634–637. https://doi.org/10.1126/science.aaf6056 Shifa H, Gopalakrishnan C, Velazhahan R (2018) Management of late leaf spot (Phaeoisariopsis personata) and root rot (Macrophomina phaseolina) diseases of groundnut (Arachis hypogaea L.) with plant growth-promoting rhizobacteria, systemic acquired resistance inducers and plant extracts. Phytoparasitica 46:19–30. https://doi.org/10.1007/s12600-018-0644-z Sokal RR, Rohlf FJ (1986) Introducción a la Bioestadística, Barcelona. Dover Publications. https://www.reverte.com/libro/introduccion-a-la-bioestadistica_91504/ Taylor RG, Walker DC, McInnes RR (1993) E. coli host strains significantly affect the quality of small scale plasmid DNA preparations used for sequencing. Nucleic Acids Res 21:1677–1678 Tsai CJ-Y, Loh JMS, Proft T (2016) Galleria mellonella infection models for the study of bacterial disease and for antimicrobial drug testing. Virulence 7(3):214–229. https://doi.org/10.1080/21505594.2015.1135289 Vacheron J, Péchy-Tarr M, Brochet S, Heiman CM, Stojiljkovic M, Maurhofer M, Keel C (2019) T6SS contributes to gut microbe invasion and killing of an herbivorous pest insect by plant-beneficial Pseudomonas protegens. ISME J 13:1318–1329. https://doi.org/10.1038/s41396-019-0353-8 Vesga P, Flury P, Vacheron J, Keel C, Croll D, Maurhofer M (2020) Transcriptome plasticity underlying plant root colonization and insect invasion by Pseudomonas protegens. ISME J 14:2766–2782. https://doi.org/10.1038/s41396-020-0729-9 Vesga P, Augustiny E, Keel C, Maurhofer M, Vacheron J (2021) Phylogenetically closely related pseudomonads isolated from arthropods exhibit differential insect-killing abilities and genetic variations in insecticidal factors. Environ Microbiol 23(9):5378–5394. https://doi.org/10.1111/1462-2920.15623 Wang J, Zhi X, Yu X, Xu H (2013) Synthesis and insecticidal activity of new deoxypodophyllotoxin based phenazine analogues against Mythimna separata walker. J Agric Food Chem 61(26):6336–6343. https://doi.org/10.1021/j4011033