Insecticidal activity of metallic nanopesticides synthesized from natural resources: A review

Springer Science and Business Media LLC - Tập 21 - Trang 1141-1176 - 2022
Chengxi Li1, Yapeng Han1, Tiantian Gao1, Jun Zhang1, De-Xiang Xu1, Yán Wāng1
1Department of Toxicology, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, School of Public Health, Anhui Medical University, Hefei, China

Tóm tắt

Insects are a major source of human diseases and agricultural loss, but actual insecticides are highly toxic for humans, thus calling for advanced pesticides. For instance, metallic nanoparticles have recetly attracted research attention as pesticides, because metallic nanoparticles can be synthesized from natural resources by green methods. Here we review metal-based nanoparticles as insecticides to fight mosquitos, ticks, blood-feeding parasites, and crop pests. Metal nanoparticles are made of gold, copper, iron, palladium, and nickel, and oxides of zinc, titanium, aluminum, iron, copper, magnesium, and cadmium. Toxicity is induced by intrinsic properties of nanoparticles, release of metal ions, redox disequilibrium, enzyme inactivation, and genetic damage. We also compare metal nanopesticides with traditional pesticides. We found that metallic nanoparticles exhibited larvicidal and pupicidal activities against various mosquito vectors of dengue fever, malaria, and other diseases. The phytochemicals of the raw natural materials for the synthesis of metallic nanoparticles may also creat pesticidal properties. Insecticidal efficacy is controlled by sizes, shapes, and charges of nanoparticles. Issues regarding the realistic usage of metallic nanopesticides, such as the appropriate dosage, insecticidal efficiency in the field, and their potential risks to human health and the eco-environment, require further investigation.

Tài liệu tham khảo

Abdullah HH, Molla AE, Salib FA, Allam NA, Ghazy AA, Shafy SA (2016) Morphological and molecular identification of the brown dog tick Rhipicephalus sanguineus and the camel tick Hyalomma dromedarii (Acari: Ixodidae) vectors of Rickettsioses in Egypt. Vet World 9:1087–1101. https://doi.org/10.14202/vetworld.2016.1087-1101 Abinaya M, Vaseeharan B, Divya M, Sharmili A, Govindarajan M, Alharbi NS, Kadaikunnan S, Khaled JM, Benelli G (2018) Bacterial exopolysaccharide (EPS)-coated ZnO nanoparticles showed high antibiofilm activity and larvicidal toxicity against malaria and Zika virus vectors. J Trace Elem Med Biol 45:93–103. https://doi.org/10.1016/j.jtemb.2017.10.002 Adeel M, Ma C, Ullah S, Rizwan M, Hao Y, Chen C, Jilani G, Shakoor N, Li M, Wang L, Tsang D, Rinklebe J, Rui Y, Xing B (2019) Exposure to nickel oxide nanoparticles insinuates physiological, ultrastructural and oxidative damage: a life cycle study on Eisenia fetida. Environ Pollut 254:113032. https://doi.org/10.1016/j.envpol.2019.113032 Ahmed T, Liaqat I, Hyder MZ, Akhtar S, Bhatti AH, Butt SB, Imran Z, Yasmin T, Abbas S (2021) Elucidation of larvicidal potential of metallic and environment friendly food-grade nanostructures against Aedes albopictus. Environ Geochem Health 43:1903–1925. https://doi.org/10.1007/s10653-020-00771-4 Alaraby M, Annangi B, Hernández A, Creus A, Marcos R (2015) A comprehensive study of the harmful effects of ZnO nanoparticles using Drosophila melanogaster as an in vivo model. J Hazard Mater 296:166–174. https://doi.org/10.1016/j.jhazmat.2015.04.053 Amde M, Liu JF, Tan ZQ, Bekana D (2017) Transformation and bioavailability of metal oxide nanoparticles in aquatic and terrestrial environments: a review. Environ Pollut 230:250–267. https://doi.org/10.1016/j.envpol.2017.06.064 Amuthavalli P, Hwang JS, Dahms HU, Wang L, Anitha J, Vasanthakumaran M, Gandhi AD, Murugan K, Subramaniam J, Paulpandi M, Chandramohan B, Singh S (2021) Zinc oxide nanoparticles using plant Lawsonia inermis and their mosquitocidal, antimicrobial, anticancer applications showing moderate side effects. Sci Rep 11:8837. https://doi.org/10.1038/s41598-021-88164-0 Anakwue R (2019) Cardiotoxicity of pesticides: are Africans at risk? Cardiovasc Toxicol 19:95–104. https://doi.org/10.1007/s12012-018-9486-7 Anand AS, Gahlot U, Prasad DN, Amitabh KE (2019) Aluminum oxide nanoparticles mediated toxicity, loss of appendages in progeny of Drosophila melanogaster on chronic exposure. Nanotoxicology 13:977–989. https://doi.org/10.1080/17435390.2019.1602680 Antenucci SM, Kramer LD, Gebhardt LL, Kauffman E (2020) Emerging tick-borne diseases. Clin Microbiol Rev 33:e00083-e118. https://doi.org/10.1128/cmr.00083-18 Aruani JV, Carrión F, Valdez SR, Nadin SB (2020) Genomic effects of a nanostructured alumina insecticide in human peripheral blood lymphocytes in vitro. Heliyon 6:e04216. https://doi.org/10.1016/j.heliyon.2020.e04216 Ashokan AP, Paulpandi M, Dinesh D, Murugan K, Vadivalagan C, Benelli G (2016) Toxicity on dengue mosquito vectors through Myristica fragrans-synthesized zinc oxide nanorods, and their cytotoxic effects on liver cancer cells (HepG2). J Clust Sci 28:205–226. https://doi.org/10.1007/s10876-016-1075-y Athanassiou CG, Kavallieratos NG, Benelli G, Losic D, Rani PU, Desneux N (2017) Nanoparticles for pest control: current status and future perspectives. J Pest Sci 91:1–15. https://doi.org/10.1007/s10340-017-0898-0 Auffan M, Rose J, Bottero JY, Lowry GV, Jolivet JP, Wiesner MR (2009) Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat Nanotechnol 4:634–641. https://doi.org/10.1038/nnano.2009.242 Ayoub HA, Khairy M, Rashwan FA, Hafez H (2017) Synthesis and characterization of silica nanostructures for cotton leaf worm control. J Nanostruct Chem 7:91–100. https://doi.org/10.1007/s40097-017-0229-2 Ayoub HA, Khairy M, Elsaid S, Rashwan FA, Hafez H (2018) Pesticidal activity of nanostructured metal oxides for generation of alternative pesticide formulations. J Agric Food Chem 66:5491–5498. https://doi.org/10.1021/acs.jafc.8b01600 Balalakshmi C, Gopinath K, Govindarajan M, Lokesh R, Arumugam A, Alharbi NS, Kadaikunnan S, Khaled JM, Benelli G (2017) Green synthesis of gold nanoparticles using a cheap Sphaeranthus indicus extract: impact on plant cells and the aquatic crustacean Artemia nauplii. J Photochem Photobiol B 173:598–605. https://doi.org/10.1016/j.jphotobiol.2017.06.040 Balasubramani G, Ramkumar R, Krishnaveni N, Sowmiya R, Deepak P, Arul D, Perumal P (2015) GC-MS analysis of bioactive components and synthesis of gold nanoparticle using Chloroxylon swietenia DC leaf extract and its larvicidal activity. J Photochem Photobiol B 148:1–8. https://doi.org/10.1016/j.jphotobiol.2015.03.016 Banumathi B, Vaseeharan B, Ishwarya R, Govindarajan M, Alharbi NS, Kadaikunnan S, Khaled JM, Benelli G (2017a) Toxicity of herbal extracts used in ethno-veterinary medicine and green-encapsulated ZnO nanoparticles against Aedes aegypti and microbial pathogens. Parasitol Res 116:1637–1651. https://doi.org/10.1007/s00436-017-5438-6 Banumathi B, Vaseeharan B, Rajasekar P, Prabhu NM, Ramasamy P, Murugan K, Canale A, Benelli G (2017b) Exploitation of chemical, herbal and nanoformulated acaricides to control the cattle tick, Rhipicephalus (Boophilus) microplus—a review. Vet Parasitol 244:102–110. https://doi.org/10.1016/j.vetpar.2017.07.021 Barata C, Varo I, Navarro JC, Arun S, Porte C (2005) Antioxidant enzyme activities and lipid peroxidation in the freshwater cladoceran Daphnia magna exposed to redox cycling compounds. Comp Biochem Physiol C Toxicol Pharmacol 140:175–186. https://doi.org/10.1016/j.cca.2005.01.013 Baun A, Hartmann NB, Grieger K, Kusk KO (2008) Ecotoxicity of engineered nanoparticles to aquatic invertebrates: a brief review and recommendations for future toxicity testing. Ecotoxicology 17:387–395. https://doi.org/10.1007/s10646-008-0208-y Benelli G (2018a) Gold nanoparticles—against parasites and insect vectors. Acta Trop 178:73–80. https://doi.org/10.1016/j.actatropica.2017.10.021 Benelli G (2018b) Mode of action of nanoparticles against insects. Environ Sci Pollut Res Int 25:12329–12341. https://doi.org/10.1007/s11356-018-1850-4 Benelli G, Duggan MF (2018) Management of arthropod vector data—social and ecological dynamics facing the One Health perspective. Acta Trop 182:80–91. https://doi.org/10.1016/j.actatropica.2018.02.015 Benelli G, Mehlhorn H (2016) Declining malaria, rising of dengue and Zika virus: Insights for mosquito vector control. Parasitol Res 115:1747–1754. https://doi.org/10.1007/s00436-016-4971-z Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, Drake JM, Brownstein JS, Hoen AG, Sankoh O, Myers MF, George DB, Jaenisch T, Wint GR, Simmons CP, Scott TW, Farrar JJ, Hay SI (2013) The global distribution and burden of dengue. Nature 496:504–507. https://doi.org/10.1038/nature12060 Bhattacharya R, Mukherjee P (2008) Biological properties of “naked” metal nanoparticles. Adv Drug Deliv Rev 60:1289–1306. https://doi.org/10.1016/j.addr.2008.03.013 Bhumkar DR, Joshi HM, Sastry M, Pokharkar VB (2007) Chitosan reduced gold nanoparticles as novel carriers for transmucosal delivery of insulin. Pharm Res 24:1415–1426. https://doi.org/10.1007/s11095-007-9257-9 Boffetta P, Soutar A, Cherrie JW, Granath F, Andersen A, Anttila A, Blettner M, Gaborieau V, Klug SJ, Langard S, Luce D, Merletti F, Miller B, Mirabelli D, Pukkala E, Adami HO, Weiderpass E (2004) Mortality among workers employed in the titanium dioxide production industry in Europe. Cancer Causes Control 15:697–706. https://doi.org/10.1023/b:Caco.0000036188.23970.22 Brooks SJ, Mills CL (2003) The effect of copper on osmoregulation in the freshwater amphipod Gammarus pulex. Comp Biochem Physiol A Mol Integr Physiol 135:527–537. https://doi.org/10.1016/s1095-6433(03)00111-9 Cedillo LR, Varaldo H, Salazar JS, Alvarado CE, Kuwabara YM, Noyola M, Deval LB, Rocha MG (2020) Biological synthesis of iron nanoparticles using hydrolysates from a waste-based biorefinery. Environ Sci Pollut Res Int 27:28649–28669. https://doi.org/10.1007/s11356-020-08729-w Chakrabarti A, Patra P (2020) Relative larvicidal property of common oxide nanostructures against Culex quinquefasciatus. IET Nanobiotechnol 14:389–395. https://doi.org/10.1049/iet-nbt.2020.0040 Chavolla ET, Ranasinghe RJ, Alocilja EC (2010) Characterization and functionalization of biogenic gold nanoparticles for biosensing enhancement. IEEE Trans Nanotechnol 9:533–538. https://doi.org/10.1109/tnano.2010.2052926 Das P, Xenopoulos MA, Metcalfe CD (2013) Toxicity of silver and titanium dioxide nanoparticle suspensions to the aquatic invertebrate, Daphnia magna. Bull Environ Contam Toxicol 91:76–82. https://doi.org/10.1007/s00128-013-1015-6 Das RK, Pachapur VL, Lonappan L, Naghdi M, Pulicharla R, Maiti S, Cledon M, Dalila L, Sarma SJ, Brar SK (2017) Biological synthesis of metallic nanoparticles: plants, animals and microbial aspects. Nanotechnol Environ Eng 2:18. https://doi.org/10.1007/s41204-017-0029-4 Desneux N, Decourtye A, Delpuech JM (2007) The sublethal effects of pesticides on beneficial arthropods. Annu Rev Entomol 52:81–106. https://doi.org/10.1146/annurev.ento.52.110405.091440 Després L, David JP, Gallet C (2007) The evolutionary ecology of insect resistance to plant chemicals. Trends Ecol Evol 22:298–307. https://doi.org/10.1016/j.tree.2007.02.010 Dikshit PK, Kumar J, Das AK, Sadhu S, Sharma S, Singh S, Gupta PK, Kim BS (2021) Green synthesis of metallic nanoparticles: applications and limitations. Catalysts 11:902. https://doi.org/10.3390/catal11080902 Duarte JL, Oliveira A, Pinto MC, Chorilli M (2020) Botanical insecticide-based nanosystems for the control of Aedes (Stegomyia) aegypti larvae. Environ Sci Pollut Res Int 27:28737–28748. https://doi.org/10.1007/s11356-020-09278-y Elango G, Roopan SM, Dhamodaran KI, Elumalai K, Dhabi N, Arasu MV (2016) Spectroscopic investigation of biosynthesized nickel nanoparticles and its larvicidal, pesticidal activities. J Photochem Photobiol B 162:162–167. https://doi.org/10.1016/j.jphotobiol.2016.06.045 Elango G, Roopan SM, Dhabi N, Arasu MV, Damodharan KI, Elumalai K (2017) Cocos nucifera coir-mediated green synthesis of Pd NPs and its investigation against larvae and agricultural pest. Artif Cells Nanomed Biotechnol 45:1581–1587. https://doi.org/10.1080/21691401.2016.1262382 Elfeky AS, Salem SS, Elzaref AS, Owda ME, Eladawy HA, Saeed AM, Awad MA, Zeid R, Fouda A (2020) Multifunctional cellulose nanocrystal/metal oxide hybrid, photo-degradation, antibacterial and larvicidal activities. Carbohydr Polym 230:115711. https://doi.org/10.1016/j.carbpol.2019.115711 Fouda A, Awad MA, Eid AM, Saied E, Barghoth MG, Hamza MF, Awad MF, Abdelbary S, Hassan SE (2021) An eco-friendly approach to the control of pathogenic microbes and Anopheles stephensi malarial vector using magnesium oxide nanoparticles (Mg-NPs) fabricated by Penicillium chrysogenum. Int J Mol Sci 22:5096. https://doi.org/10.3390/ijms22105096 Gallego A, González AM, Ortega R, Gutiérrez JC (2007) Flow cytometry assessment of cytotoxicity and reactive oxygen species generation by single and binary mixtures of cadmium, zinc and copper on populations of the ciliated protozoan Tetrahymena thermophila. Chemosphere 68:647–661. https://doi.org/10.1016/j.chemosphere.2007.02.031 Gandhi PR, Jayaseelan C, Mary RR, Mathivanan D, Suseem SR (2017) Acaricidal, pediculicidal and larvicidal activity of synthesized ZnO nanoparticles using Momordica charantia leaf extract against blood feeding parasites. Exp Parasitol 181:47–56. https://doi.org/10.1016/j.exppara.2017.07.007 Ghany H, Shafy SA, Abuowarda MM, Khateeb R, Hoballah E, Hammam A, Fahmy MM (2021) In vitro acaricidal activity of green synthesized nickel oxide nanoparticles against the camel tick, Hyalomma dromedarii (Ixodidae), and its toxicity on Swiss albino mice. Exp Appl Acarol 83:611–633. https://doi.org/10.1007/s10493-021-00596-5 Ghany H, Shafy SA, Abuowarda MM, Khateeb R, Hoballah EM, Fahmy MM (2022) Acaricidal efficacy of biosynthesized zinc oxide nanoparticles against Hyalomma dromedarii (Acari: Ixodidae) and their toxic effects on Swiss albino mice. Acta Parasitol 67:878–891. https://doi.org/10.1007/s11686-022-00530-8 Ghosh S, Bansal GC, Gupta SC, Ray D, Khan MQ, Irshad H, Shahiduzzaman M, Seitzer U, Ahmed JS (2007) Status of tick distribution in Bangladesh, India and Pakistan. Parasitol Res 2:S207-216. https://doi.org/10.1007/s00436-007-0684-7 Ghramh HA, Khan KA, Ibrahim EH (2019) Biological activities of Euphorbia peplus leaves ethanolic extract and the extract fabricated gold nanoparticles (AuNPs). Molecules 24:1431. https://doi.org/10.3390/molecules24071431 Gil MF, Fassolari M, Battaglia ME, Berón CM (2021) Culex quinquefasciatus larvae development arrested when fed on Neochloris aquatica. PLoS Negl Trop Dis 15:e0009988. https://doi.org/10.1371/journal.pntd.0009988 Gowri S, Gopinath K, Arumugam A (2018) Experimental and computational assessment of mycosynthesized CdO nanoparticles towards biomedical applications. J Photochem Photobiol B 180:166–174. https://doi.org/10.1016/j.jphotobiol.2018.02.009 Grande F, Tucci P (2016) Titanium dioxide nanoparticles: a risk for human health? Mini Rev Med Chem 16:762–769. https://doi.org/10.2174/1389557516666160321114341 Gray L, Florez SD, Barreiro AM, Sánchez JV, Olvera GG, Lenhart A, Saide PM, Prokopec G (2018) Experimental evaluation of the impact of household aerosolized insecticides on pyrethroid resistant Aedes aegypti. Sci Rep 8:12535. https://doi.org/10.1038/s41598-018-30968-8 Grisi L, Leite RC, Martins JR, Barros AT, Andreotti R, Cançado P, León A, Pereira JB, Villela HS (2014) Reassessment of the potential economic impact of cattle parasites in Brazil. Rev Bras Parasitol Vet 23:150–156. https://doi.org/10.1590/s1984-29612014042 He S, Zhang Y, Guo Z, Gu N (2008) Biological synthesis of gold nanowires using extract of Rhodopseudomonas capsulata. Biotechnol Prog 24:476–480. https://doi.org/10.1021/bp0703174 Heinlaan M, Kahru A, Kasemets K, Arbeille B, Prensier G, Dubourguier HC (2011) Changes in the Daphnia magna midgut upon ingestion of copper oxide nanoparticles: a transmission electron microscopy study. Water Res 45:179–190. https://doi.org/10.1016/j.watres.2010.08.026 Hext PM, Tomenson JA, Thompson P (2005) Titanium dioxide: inhalation toxicology and epidemiology. Ann Occup Hyg 49:461–472. https://doi.org/10.1093/annhyg/mei012 Huang N, Yan Y, Xu Y, Jin Y, Lei J, Zou X, Ran D, Zhang H, Luan S, Gu H (2013) Alumina nanoparticles alter rhythmic activities of local interneurons in the antennal lobe of Drosophila. Nanotoxicology 7:212–220. https://doi.org/10.3109/17435390.2011.648668 Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B (2014) Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci 9:385–406 Ishtiaq F, Swain S, Sampath-Kumar S (2021) Anopheles stephensi (Asian malaria mosquito). Trends Parasitol 37:571–572. https://doi.org/10.1016/j.pt.2021.03.009 Ishwarya R, Vaseeharan B, Kalyani S, Banumathi B, Govindarajan M, Alharbi NS, Kadaikunnan S, Anbr M, Khaled JM, Benelli G (2018a) Facile green synthesis of zinc oxide nanoparticles using Ulva lactuca seaweed extract and evaluation of their photocatalytic, antibiofilm and insecticidal activity. J Photochem Photobiol B 178:249–258. https://doi.org/10.1016/j.jphotobiol.2017.11.006 Ishwarya R, Vaseeharan B, Subbaiah S, Nazar AK, Govindarajan M, Alharbi NS, Kadaikunnan S, Khaled JM, Anbr M (2018b) Sargassum wightii-synthesized ZnO nanoparticles—from antibacterial and insecticidal activity to immunostimulatory effects on the green tiger shrimp Penaeus semisulcatus. J Photochem Photobiol B 183:318–330. https://doi.org/10.1016/j.jphotobiol.2018.04.049 Jalili P, Huet S, Lanceleur R, Jarry G, Hegarat LL, Nesslany F, Hogeveen K, Fessard V (2020) Genotoxicity of aluminum and aluminum oxide nanomaterials in rats following oral exposure. Nanomaterials 10:305. https://doi.org/10.3390/nano10020305 Jayaseelan C, Gandhi PR, Rajasree S, Suman TY, Mary RR (2018) Toxicity studies of nanofabricated palladium against filariasis and malaria vectors. Environ Sci Pollut Res Int 25:324–332. https://doi.org/10.1007/s11356-017-0428-x Kancharana S, Chengalva RV, Kothapalli SR, Yegireddy M, Bollini S, Vara P (2020) Assessment of acaricidal activity of nanoscale ZnO encapsulated piperine formulation against Rhipicephalus microplus. IET Nanobiotechnol 14:722–731. https://doi.org/10.1049/iet-nbt.2020.0159 Kelly SA, Havrilla CM, Brady TC, Abramo KH, Levin ED (1998) Oxidative stress in toxicology: established mammalian and emerging piscine model systems. Environ Health Perspect 106:375–384. https://doi.org/10.1289/ehp.98106375 Khabir Z, Holmes AM, Lai YJ, Liang L, Deva A, Polikarpov MA, Roberts MS, Zvyagin AV (2021) Human epidermal zinc concentrations after topical application of ZnO nanoparticles in sunscreens. Int J Mol Sci 22:12372. https://doi.org/10.3390/ijms222212372 Khan R, Fulekar MH (2016) Biosynthesis of titanium dioxide nanoparticles using Bacillus amyloliquefaciens culture and enhancement of its photocatalytic activity for the degradation of a sulfonated textile dye Reactive Red 31. J Colloid Interface Sci 475:184–191. https://doi.org/10.1016/j.jcis.2016.05.001 Khan ST, Musarrat J, Khedhairy A (2016) Countering drug resistance, infectious diseases, and sepsis using metal and metal oxides nanoparticles: current status. Colloids Surf B Biointerfaces 146:70–83. https://doi.org/10.1016/j.colsurfb.2016.05.046 Kharissova OV, Kharisov BI, González C, Méndez YP, López I (2019) Greener synthesis of chemical compounds and materials. R Soc Open Sci 6:191378. https://doi.org/10.1098/rsos.191378 Kheirallah D, Samad L, Moneim A (2021) DNA damage and ovarian ultrastructural lesions induced by nickel oxide nano-particles in Blaps polycresta (Coleoptera: Tenebrionidae). Sci Total Environ 753:141743. https://doi.org/10.1016/j.scitotenv.2020.141743 Kimber RL, Lewis EA, Parmeggiani F, Smith K, Bagshaw H, Starborg T, Joshi N, Figueroa AI, Laan G, Cibin G, Gianolio D, Haigh SJ, Pattrick R, Turner NJ, Lloyd JR (2018) Biosynthesis and characterization of copper nanoparticles using Shewanella oneidensis: application for click chemistry. Small 14:1703145. https://doi.org/10.1002/smll.201703145 Kirthi AV, Rahuman AA, Rajakumar G, Marimuthu S, Santhoshkumar T, Jayaseelan C, Velayutham K (2011) Acaricidal, pediculocidal and larvicidal activity of synthesized ZnO nanoparticles using wet chemical route against blood feeding parasites. Parasitol Res 109:461–472. https://doi.org/10.1007/s00436-011-2277-8 Klaine SJ, Alvarez P, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, McLaughlin MJ, Lead JR (2008) Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27:1825–1851. https://doi.org/10.1897/08-090.1 Kohen R, Nyska A (2002) Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol Pathol 30:620–650. https://doi.org/10.1080/01926230290166724 Kumar AN, Jeyalalitha T, Murugan K, Madhiyazhagan P (2013) Bioefficacy of plant-mediated gold nanoparticles and Anthocepholus cadamba on filarial vector, Culex quinquefasciatus (Insecta: Diptera: Culicidae). Parasitol Res 112:1053–1063. https://doi.org/10.1007/s00436-012-3232-z Kumar D, Kumar P, Singh H, Agrawal V (2020) Biocontrol of mosquito vectors through herbal-derived silver nanoparticles: prospects and challenges. Environ Sci Pollut Res Int 27:25987–26024. https://doi.org/10.1007/s11356-020-08444-6 Kumaravel J, Lalitha K, Arunthirumeni M, Shivakumar MS (2021) Mycosynthesis of bimetallic zinc oxide and titanium dioxide nanoparticles for control of Spodoptera frugiperda. Pestic Biochem Physiol 178:104910. https://doi.org/10.1016/j.pestbp.2021.104910 Lallawmawma H, Sathishkumar G, Sarathbabu S, Ghatak S, Sivaramakrishnan S, Gurusubramanian G, Kumar NS (2015) Synthesis of silver and gold nanoparticles using Jasminum nervosum leaf extract and its larvicidal activity against filarial and arboviral vector Culex quinquefasciatus Say (Diptera: Culicidae). Environ Sci Pollut Res Int 22:17753–17768. https://doi.org/10.1007/s11356-015-5001-x Lee CC, Lin YH, Hou WC, Li MH, Chang JW (2020) Exposure to ZnO/TiO2 nanoparticles affects health outcomes in cosmetics salesclerks. Int J Environ Res Public Health 17:6088. https://doi.org/10.3390/ijerph17176088 Lessler J, Chaisson LH, Kucirka LM, Bi Q, Grantz K, Salje H, Carcelen AC, Ott CT, Sheffield JS, Ferguson NM, Cummings D, Metcalf C, Barraquer IR (2016) Assessing the global threat from Zika virus. Science. https://doi.org/10.1126/science.aaf8160 Leung YH, Ng A, Xu X, Shen Z, Gethings LA, Wong MT, Chan C, Guo MY, Ng YH, Djurišić AB, Lee P, Chan WK, Yu LH, Phillips DL, Ma A, Leung F (2014) Mechanisms of antibacterial activity of MgO: non-ROS mediated toxicity of MgO nanoparticles towards Escherichia coli. Small 10:1171–1183. https://doi.org/10.1002/smll.201302434 Long TC, Saleh N, Tilton RD, Lowry GV, Veronesi B (2006) Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): implications for nanoparticle neurotoxicity. Environ Sci Technol 40:4346–4352. https://doi.org/10.1021/es060589n Magaye R, Zhao J (2012) Recent progress in studies of metallic nickel and nickel-based nanoparticles’ genotoxicity and carcinogenicity. Environ Toxicol Pharmacol 34:644–650. https://doi.org/10.1016/j.etap.2012.08.012 Magro M, Bramuzzo S, Baratella D, Ugolotti J, Zoppellaro G, Chemello G, Olivotto I, Ballarin C, Radaelli G, Arcaro B, Liguoro MD, Coppellotti O, Guidolin L, Roger J, Bonaiuto E, Zboril R, Vianello F (2019) Self-assembly of chlorin-e6 on γ-Fe2O3 nanoparticles: application for larvicidal activity against Aedes aegypti. J Photochem Photobiol B 194:21–31. https://doi.org/10.1016/j.jphotobiol.2019.03.004 Manzo S, Rocco A, Carotenuto R, Picione F, Miglietta ML, Rametta G, Francia GD (2011) Investigation of ZnO nanoparticles’ ecotoxicological effects towards different soil organisms. Environ Sci Pollut Res Int 18:756–763. https://doi.org/10.1007/s11356-010-0421-0 Marimuthu S, Rahuman AA, Jayaseelan C, Kirthi AV, Santhoshkumar T, Velayutham K, Bagavan A, Kamaraj C, Elango G, Iyappan M, Siva C, Karthik L, Rao K (2013a) Acaricidal activity of synthesized titanium dioxide nanoparticles using Calotropis gigantea against Rhipicephalus microplus and Haemaphysalis bispinosa. Asian Pac J Trop Med 6:682–688. https://doi.org/10.1016/s1995-7645(13)60118-2 Marimuthu S, Rahuman AA, Kirthi AV, Santhoshkumar T, Jayaseelan C, Rajakumar G (2013b) Eco-friendly microbial route to synthesize cobalt nanoparticles using Bacillus thuringiensis against malaria and dengue vectors. Parasitol Res 112:4105–4112. https://doi.org/10.1007/s00436-013-3601-2 Matatkova O, Michailidu J, Miskovska A, Kolouchova I, Masak J, Cejkova A (2022) Antimicrobial properties and applications of metal nanoparticles biosynthesized by green methods. Biotechnol Adv 58:107905. https://doi.org/10.1016/j.biotechadv.2022.107905 Matthews BJ (2019) Aedes aegypti. Trends Genet 35:470–471. https://doi.org/10.1016/j.tig.2019.03.005 Minal SP, Prakash S (2020) Laboratory analysis of Au–Pd bimetallic nanoparticles synthesized with Citrus limon leaf extract and its efficacy on mosquito larvae and non-target organisms. Sci Rep 10:21610. https://doi.org/10.1038/s41598-020-78662-y Moyes CL, Vontas J, Martins AJ, Ng LC, Koou SY, Dusfour I, Raghavendra K, Pinto J, Corbel V, David JP, Weetman D (2017) Contemporary status of insecticide resistance in the major Aedes vectors of arboviruses infecting humans. PLoS Negl Trop Dis 11:e0005625. https://doi.org/10.1371/journal.pntd.0005625 Muñoz DL, Zapater M, Torreblanca A, Garcerá MD (2019) Evaluation of the effects of titanium dioxide and aluminum oxide nanoparticles through tarsal contact exposure in the model insect Oncopeltus fasciatus. Sci Total Environ 666:759–765. https://doi.org/10.1016/j.scitotenv.2019.02.218 Murugan K, Benelli G, Panneerselvam C, Subramaniam J, Jeyalalitha T, Dinesh D, Nicoletti M, Hwang JS, Suresh U, Madhiyazhagan P (2015) Cymbopogon citratus-synthesized gold nanoparticles boost the predation efficiency of copepod Mesocyclops aspericornis against malaria and dengue mosquitoes. Exp Parasitol 153:129–138. https://doi.org/10.1016/j.exppara.2015.03.017 Murugan K, Dinesh D, Kavithaa K, Paulpandi M, Ponraj T, Alsalhi MS, Devanesan S, Subramaniam J, Rajaganesh R, Wei H, Kumar S, Nicoletti M, Benelli G (2016) Hydrothermal synthesis of titanium dioxide nanoparticles: mosquitocidal potential and anticancer activity on human breast cancer cells (MCF-7). Parasitol Res 115:1085–1096. https://doi.org/10.1007/s00436-015-4838-8 Murugan K, Dinesh D, Nataraj D, Subramaniam J, Amuthavalli P, Madhavan J, Rajasekar A, Rajan M, Thiruppathi KP, Kumar S, Higuchi A, Nicoletti M, Benelli G (2018) Iron and iron oxide nanoparticles are highly toxic to Culex quinquefasciatus with little non-target effects on larvivorous fishes. Environ Sci Pollut Res Int 25:10504–10514. https://doi.org/10.1007/s11356-017-0313-7 Muthusamy R, Shivakumar MS (2015) Resistance selection and molecular mechanisms of cypermethrin resistance in red hairy caterpillar (Amsacta albistriga walker). Pestic Biochem Physiol 117:54–61. https://doi.org/10.1016/j.pestbp.2014.10.009 Nagarajan KV, Vijayarangan DR (2019) Lagenaria siceraria-synthesised ZnO NPs—a valuable green route to control the malaria vector Anopheles stephensi. IET Nanobiotechnol 13:170–177. https://doi.org/10.1049/iet-nbt.2018.5011 Nair P, Chung IM (2015) Alteration in the expression of antioxidant and detoxification genes in Chironomus riparius exposed to zinc oxide nanoparticles. Comp Biochem Physiol B Biochem Mol Biol 190:1–7. https://doi.org/10.1016/j.cbpb.2015.08.004 Naqqash MN, Gökçe A, Bakhsh A, Salim M (2016) Insecticide resistance and its molecular basis in urban insect pests. Parasitol Res 115:1363–1373. https://doi.org/10.1007/s00436-015-4898-9 Narayanan M, Devi PG, Natarajan D, Kandasamy S, Devarayan K, Alsehli M, Elfasakhany A, Pugazhendhi A (2021a) Green synthesis and characterization of titanium dioxide nanoparticles using leaf extract of Pouteria campechiana and larvicidal and pupicidal activity on Aedes aegypti. Environ Res 200:111333. https://doi.org/10.1016/j.envres.2021.111333 Narayanan M, Vigneshwari P, Natarajan D, Kandasamy S, Alsehli M, Elfasakhany A, Pugazhendhi A (2021b) Synthesis and characterization of TiO2 nanoparticles by aqueous leaf extract of Coleus aromaticus and assess their antibacterial, larvicidal, and anticancer potential. Environ Res 200:111335. https://doi.org/10.1016/j.envres.2021.111335 Nasrollahzadeh M, Sajjadi M, Dadashi J, Ghafuri H (2020) Pd-based nanoparticles: plant-assisted biosynthesis, characterization, mechanism, stability, catalytic and antimicrobial activities. Adv Colloid Interface Sci 276:102103. https://doi.org/10.1016/j.cis.2020.102103 Oberdörster G, Sharp Z, Atudorei V, Elder A, Gelein R, Kreyling W, Cox C (2004) Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol 16:437–445. https://doi.org/10.1080/08958370490439597 Patil CD, Borase HP, Suryawanshi RK, Patil SV (2016) Trypsin inactivation by latex fabricated gold nanoparticles: a new strategy towards insect control. Enzyme Microb Technol 92:18–25. https://doi.org/10.1016/j.enzmictec.2016.06.005 Peter RJ, Bossche P, Penzhorn BL, Sharp B (2005) Tick, fly, and mosquito control–lessons from the past, solutions for the future. Vet Parasitol 132:205–215. https://doi.org/10.1016/j.vetpar.2005.07.004 Poynton HC, Varshavsky JR, Chang B, Cavigiolio G, Chan S, Holman PS, Loguinov AV, Bauer DJ, Komachi K, Theil EC, Perkins EJ, Hughes O, Vulpe CD (2007) Daphnia magna ecotoxicogenomics provides mechanistic insights into metal toxicity. Environ Sci Technol 41:1044–1050. https://doi.org/10.1021/es0615573 Pradhan A, Seena S, Pascoal C, Cássio F (2012) Copper oxide nanoparticles can induce toxicity to the freshwater shredder Allogamus ligonifer. Chemosphere 89:1142–1150. https://doi.org/10.1016/j.chemosphere.2012.06.001 Pugazhendhi A, Prabhu R, Muruganantham K, Shanmuganathan R, Natarajan S (2019) Anticancer, antimicrobial and photocatalytic activities of green synthesized magnesium oxide nanoparticles (MgO NPs) using aqueous extract of Sargassum wightii. J Photochem Photobiol B 190:86–97. https://doi.org/10.1016/j.jphotobiol.2018.11.014 Puvanakrishnan P, Park J, Chatterjee D, Krishnan S, Tunnell JW (2012) In vivo tumor targeting of gold nanoparticles: effect of particle type and dosing strategy. Int J Nanomed 7:1251–1258. https://doi.org/10.2147/ijn.S29147 Quigg A, Chin WC, Chen CS, Zhang S, Jiang Y, Miao AJ, Schwehr KA, Xu C, Santschi PH (2013) Direct and indirect toxic effects of engineered nanoparticles on algae: Role of natural organic matter. ACS Sustain Chem Eng 1:686–702. https://doi.org/10.1021/sc400103x Rahimi G, Mohammad KS, Zarei M, Shokoohi M, Oskoueian E, Poorbagher M, Karimi E (2022) Zinc oxide nanoparticles synthesized using Hyssopus officinalis L. extract induced oxidative stress and changes the expression of key genes involved in inflammatory and antioxidant Systems. Biol Res 55:24. https://doi.org/10.1186/s40659-022-00392-4 Rajakumar G, Rahuman AA, Velayutham K, Ramyadevi J, Jeyasubramanian K, Marikani A, Elango G, Kamaraj C, Santhoshkumar T, Marimuthu S, Zahir AA, Bagavan A, Jayaseelan C, Kirthi AV, Iyappan M, Siva C (2013) Novel and simple approach using synthesized nickel nanoparticles to control blood-sucking parasites. Vet Parasitol 191:332–339. https://doi.org/10.1016/j.vetpar.2012.08.028 Rajakumar G, Rahuman AA, Jayaseelan C, Santhoshkumar T, Marimuthu S, Kamaraj C, Bagavan A, Zahir AA, Kirthi AV, Elango G, Arora P, Karthikeyan R, Manikandan S, Jose S (2014) Solanum trilobatum extract-mediated synthesis of titanium dioxide nanoparticles to control Pediculus humanus capitis, Hyalomma anatolicum anatolicum and Anopheles subpictus. Parasitol Res 113:469–479. https://doi.org/10.1007/s00436-013-3676-9 Rajakumar G, Rahuman AA, Roopan SM, Chung IM, Anbarasan K, Karthikeyan V (2015) Efficacy of larvicidal activity of green synthesized titanium dioxide nanoparticles using Mangifera indica extract against blood-feeding parasites. Parasitol Res 114:571–581. https://doi.org/10.1007/s00436-014-4219-8 Ramyadevi J, Jeyasubramanian K, Marikani A, Rajakumar G, Rahuman AA, Santhoshkumar T, Kirthi AV, Jayaseelan C, Marimuthu S (2011) Copper nanoparticles synthesized by polyol process used to control hematophagous parasites. Parasitol Res 109:1403–1415. https://doi.org/10.1007/s00436-011-2387-3 Richardson JR, Fitsanakis V, Westerink R, Kanthasamy AG (2019) Neurotoxicity of pesticides. Acta Neuropathol 138:343–362. https://doi.org/10.1007/s00401-019-02033-9 Rikans LE, Hornbrook KR (1997) Lipid peroxidation, antioxidant protection and aging. Biochim Biophys Acta 1362:116–127. https://doi.org/10.1016/s0925-4439(97)00067-7 Roiz D, Wilson AL, Scott TW, Fonseca DM, Jourdain F, Müller P, Velayudhan R, Corbel V (2018) Integrated Aedes management for the control of Aedes-borne diseases. PLoS Negl Trop Dis 12:e0006845. https://doi.org/10.1371/journal.pntd.0006845 Rutishauser BR, Mühlfeld C, Blank F, Musso C, Gehr P (2007) Translocation of particles and inflammatory responses after exposure to fine particles and nanoparticles in an epithelial airway model. Part Fibre Toxicol 4:9. https://doi.org/10.1186/1743-8977-4-9 Salem SS, Fouda A (2021) Green aynthesis of metallic nanoparticles and their prospective biotechnological applications: an overview. Biol Trace Elem Res 199:344–370. https://doi.org/10.1007/s12011-020-02138-3 Selvan SM, Anand KV, Govindaraju K, Tamilselvan S, Kumar VG, Subramanian KS, Kannan M, Raja K (2018) Green synthesis of copper oxide nanoparticles and mosquito larvicidal activity against dengue, zika and chikungunya causing vector Aedes aegypti. IET Nanobiotechnol 12:1042–1046. https://doi.org/10.1049/iet-nbt.2018.5083 Shafy SA, Allam NA, Mediannikov O, Parola P, Raoult D (2012) Molecular detection of spotted fever group rickettsiae associated with ixodid ticks in Egypt. Vector Borne Zoonotic Dis 12:346–359. https://doi.org/10.1089/vbz.2010.0241 Sharma S, Kooner R, Arora R (2017) Insect pests and crop losses. In: Arora R (ed) Breeding insect resistant crops for sustainable agriculture. Gateway East, Singapore, pp 45–66. https://doi.org/10.1007/978-981-10-6056-4 Shibata M, Kanetaka H, Furuya M, Yokota K, Ogawa T, Kawashita M (2021) Cytotoxicity evaluation of iron nitride nanoparticles for biomedical applications. J Biomed Mater Res A 109:1784–1791. https://doi.org/10.1002/jbm.a.37171 Siddique YH, Fatima A, Jyoti S, Naz F, Rahul KW, Singh BR, Naqvi AH (2013) Evaluation of the toxic potential of graphene copper nanocomposite (GCNC) in the third instar larvae of transgenic Drosophila melanogaster (hsp70-lacZ)Bg9. PLoS ONE 8:e80944. https://doi.org/10.1371/journal.pone.0080944 Siddique YH, Khan W, Khanam S, Jyoti S, Naz F, Rahul SBR, Naqvi AH (2014) Toxic potential of synthesized graphene zinc oxide nanocomposite in the third instar larvae of transgenic Drosophila melanogaster (hsp70-lacZ)Bg9. Biomed Res Int 2014:382124. https://doi.org/10.1155/2014/382124 Siddique YH, Haidari M, Khan W, Fatima A, Jyoti S, Khanam S, Naz F, Rahul AF, Singh BR, Beg T, Mohibullah NAH (2015) Toxic potential of copper-doped ZnO nanoparticles in Drosophila melanogaster (Oregon R). Toxicol Mech Methods 25:425–432. https://doi.org/10.3109/15376516.2015.1045653 Singh S (2019) Zinc oxide nanoparticles impacts: cytotoxicity, genotoxicity, developmental toxicity, and neurotoxicity. Toxicol Mech Methods 29:300–311. https://doi.org/10.1080/15376516.2018.1553221 Singh JP, Singh V, Sharma A, Pandey G, Chae KH, Lee S (2020) Approaches to synthesize MgO nanostructures for diverse applications. Heliyon 6:e04882. https://doi.org/10.1016/j.heliyon.2020.e04882 Soni N, Prakash S (2012) Efficacy of fungus mediated silver and gold nanoparticles against Aedes aegypti larvae. Parasitol Res 110:175–184. https://doi.org/10.1007/s00436-011-2467-4 Stadler T, Buteler M, Weaver DK (2010) Novel use of nanostructured alumina as an insecticide. Pest Manag Sci 66:577–579. https://doi.org/10.1002/ps.1915 Stadler T, Buteler M, Valdez SR, Gitto JG (2018) Particulate nanoinsecticides: a new concept in insect pest management. Insecticides. https://doi.org/10.5772/intechopen.72448 Subramaniam J, Murugan K, Panneerselvam C, Kovendan K, Madhiyazhagan P, Dinesh D, Kumar PM, Chandramohan B, Suresh U, Rajaganesh R, Alsalhi MS, Devanesan S, Nicoletti M, Canale A, Benelli G (2016) Multipurpose effectiveness of Couroupita guianensis-synthesized gold nanoparticles: high antiplasmodial potential, field efficacy against malaria vectors and synergy with Aplocheilus lineatus predators. Environ Sci Pollut Res Int 23:7543–7558. https://doi.org/10.1007/s11356-015-6007-0 Suganya P, Vaseeharan B, Vijayakumar S, Balan B, Govindarajan M, Alharbi NS, Kadaikunnan S, Khaled JM, Benelli G (2017) Biopolymer zein-coated gold nanoparticles: synthesis, antibacterial potential, toxicity and histopathological effects against the Zika virus vector Aedes aegypti. J Photochem Photobiol B 173:404–411. https://doi.org/10.1016/j.jphotobiol.2017.06.004 Sundararajan B, Kumari B (2017) Novel synthesis of gold nanoparticles using Artemisia vulgaris L. leaf extract and their efficacy of larvicidal activity against dengue fever vector Aedes aegypti L. J Trace Elem Med Biol 43:187–196. https://doi.org/10.1016/j.jtemb.2017.03.008 Tang S, Lo I (2013) Magnetic nanoparticles: essential factors for sustainable environmental applications. Water Res 47:2613–2632. https://doi.org/10.1016/j.watres.2013.02.039 Tang M, Wang Y (2019) Research advance on potentially involved insecticidal mechanisms and safety evaluation of nano-silver insecticide. Chin J Hyg Insect Equip 25:1–6. https://doi.org/10.19821/j.1671-2781.2019.01.001 Tang M, Zhang T, Xue Y, Wang S, Huang M, Yang Y, Lu M, Lei H, Kong L, Pu Y (2010) Dose dependent in vivo metabolic characteristics of titanium dioxide nanoparticles. J Nanosci Nanotechnol 10:8575–8583. https://doi.org/10.1166/jnn.2010.2482 Teng C, Jia J, Wang Z, Sharma VK, Yan B (2019) Size-dependent maternal-fetal transfer and fetal developmental toxicity of ZnO nanoparticles after oral exposures in pregnant mice. Ecotoxicol Environ Saf 182:109439. https://doi.org/10.1016/j.ecoenv.2019.109439 Thakkar KN, Mhatre SS, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanomedicine 6:257–262. https://doi.org/10.1016/j.nano.2009.07.002 Thandapani K, Kathiravan M, Namasivayam E, Padiksan IA, Natesan G, Tiwari M, Giovanni B, Perumal V (2018) Enhanced larvicidal, antibacterial, and photocatalytic efficacy of TiO2 nanohybrids green synthesized using the aqueous leaf extract of Parthenium hysterophorus. Environ Sci Pollut Res Int 25:10328–10339. https://doi.org/10.1007/s11356-017-9177-0 Thurnherr TB, Xiao L, Diener L, Arslan O, Hirsch C, Althaus XM, Grieder K, Wampfler B, Mathur S, Wick P, Krug HF (2013) In vitro mechanistic study towards a better understanding of ZnO nanoparticle toxicity. Nanotoxicology 7:402–416. https://doi.org/10.3109/17435390.2012.666575 Toto NA, Elhenawy HI, Eltaweil AS, Ashram SE, Samad L, Moussian B, Wakil AE (2022) Musca domestica (Diptera: Muscidae) as a biological model for the assessment of magnetite nanoparticles toxicity. Sci Total Environ 806:151483. https://doi.org/10.1016/j.scitotenv.2021.151483 Trigueiro N, Gonçalves BB, Dias FC, Lima E, Rocha TL, Morais S (2021) Co-exposure of iron oxide nanoparticles and glyphosate-based herbicide induces DNA damage and mutagenic effects in the guppy (Poecilia reticulata). Environ Toxicol Pharmacol 81:103521. https://doi.org/10.1016/j.etap.2020.103521 Udayabhanu J, Kannan V, Tiwari M, Natesan G, Giovanni B, Perumal V (2018) Nanotitania crystals induced efficient photocatalytic color degradation, antimicrobial and larvicidal activity. J Photochem Photobiol B 178:496–504. https://doi.org/10.1016/j.jphotobiol.2017.12.005 Valizadeh A, Mikaeili H, Samiei M, Farkhani SM, Zarghami N, Kouhi M, Akbarzadeh A, Davaran S (2012) Quantum dots: synthesis, bioapplications, and toxicity. Nanoscale Res Lett 7:480. https://doi.org/10.1186/1556-276x-7-480 Velsankar K, Sudhahar S, Maheshwaran G, Krishna KM (2019) Effect of biosynthesis of ZnO nanoparticles via Cucurbita seed extract on Culex tritaeniorhynchus mosquito larvae with its biological applications. J Photochem Photobiol B 200:111650. https://doi.org/10.1016/j.jphotobiol.2019.111650 Vijayaraghavan K, Ashokkumar T (2017) Plant-mediated biosynthesis of metallic nanoparticles: a review of literature, factors affecting synthesis, characterization techniques and applications. J Environ Chem Eng 5:4866–4883. https://doi.org/10.1016/j.jece.2017.09.026 Vivekanandhan P, Swathy K, Thomas A, Kweka EJ, Rahman A, Pittarate S, Krutmuang P (2021) Insecticidal efficacy of microbial-mediated synthesized copper nano-pesticide against insect pests and non-target organisms. Int J Environ Res Public Health 18:10536. https://doi.org/10.3390/ijerph181910536 Wang J, Fan Y (2014) Lung injury induced by TiO2 nanoparticles depends on their structural features: size, shape, crystal phases, and surface coating. Int J Mol Sci 15:22258–22278. https://doi.org/10.3390/ijms151222258 Wang X, Xu J, Wang X, Qiu B, Cuthbertson AGS, Du C, Wu J, Ali S (2019) Isaria fumosorosea-based zero-valent iron nanoparticles affect the growth and survival of sweet potato whitefly, Bemisia tabaci (Gennadius). Pest Manag Sci 75:2174–2181. https://doi.org/10.1002/ps.5340 Wang Y, Xiong L, Zou L, Liang Y, Xie W, Ma Y, Huang X, Tang M (2021) Subacute episodic exposure to environmental levels of atmospheric particulate matter provokes subcellular disequilibrium instead of histological vascular damage. J Hazard Mater Lett 2:100045 Wu T, Liang X, Liu X, Li Y, Wang Y, Kong L, Tang M (2020) Induction of ferroptosis in response to graphene quantum dots through mitochondrial oxidative stress in microglia. Particle Fibre Toxicol 17:30. https://doi.org/10.1186/s12989-020-00363-1 Xia T, Kovochich M, Brant J, Hotze M, Sempf J, Oberley T, Sioutas C, Yeh JI, Wiesner MR, Nel AE (2006) Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett 6:1794–1807. https://doi.org/10.1021/nl061025k Xu J, Zhang K, Cuthbertson A, Du C, Ali S (2020) Toxicity and biological effects of Beauveria brongniartii Fe0 nanoparticles against Spodoptera litura (Fabricius). InSects 11:895. https://doi.org/10.3390/insects11120895 Yazhiniprabha M, Vaseeharan B, Sonawane A, Behera A (2019) In vitro and In vivo toxicity assessment of phytofabricated ZnO nanoparticles showing bacteriostatic effect and larvicidal efficacy against Culex quinquefasciatus. J Photochem Photobiol B 192:158–169. https://doi.org/10.1016/j.jphotobiol.2019.01.014