Biến thể trình tự đa hình Inosine Triphosphate Pyrophosphohydrolase (ITPA) ở bệnh nhân ung thư huyết khối trưởng thành và mối liên hệ có thể với các khuyết tật DNA ti thể

Mazin A. Zamzami1, John A. Duley2, Gareth Price3, Deon J. Venter2, John W. Yarham4, Robert W. Taylor4, Laurence Catley2, Timothy H. Florin3, Anthony M. Marinaki5, Francis Bowling3
1King Abdulaziz University, Jeddah, Saudi Arabia
2The University of Queensland, Brisbane, Australia
3Mater Medical Research Institute, Brisbane, Australia
4Wellcome Trust Centre for Mitochondrial Research, Institute for Ageing and Health, Newcastle University, Newcastle Upon Tyne, UK
5Purine Research Laboratory, GSTS Pathology, Guy’s and St Thomas’ Hospitals, HeLaLondon, UK

Tóm tắt

Tóm tắt Đặt vấn đề

Enzyme inosine triphosphate pyrophosphohydrolase (ITPase) được coi là enzyme dọn dẹp, có nhiệm vụ phân hủy các nucleotide không điển hình (‘rogue’). Thiếu hụt hoàn toàn enzyme này có thể gây tử vong ở chuột knockout, trong khi một kiểu gen đột biến dẫn đến hoạt động enzyme thấp, với sự tích tụ của ITP và các nucleotide không điển hình khác, dường như không gây hại cho con người. Chúng tôi giả thuyết rằng hoạt động ITPase giảm có thể gây ra các khuyết tật DNA ti thể (mtDNA) mắc phải. Hơn nữa, chúng tôi điều tra xem liệu những khuyết tật mtDNA tích tụ có thể là yếu tố nguy cơ cho sự biến đổi tế bào trong ung thư huyết học trưởng thành (AHM) hay không.

Phương pháp

Dữ liệu DNA được tách chiết từ mẫu máu ngoại vi và tủy xương. Phân tích giải trình tự mtDNA dựa trên microarray được thực hiện trên 13 bệnh nhân AHM có xác nhận mang đột biến ITPA 94C>A gây hoạt động ITPase thấp và 4 bệnh nhân AHM với kiểu gen hoang dã của ITPA. Tần suất của các đa hình ITPA 94C>AIVS2+21A>C đã được nghiên cứu từ 85 bệnh nhân AHM có sẵn.

Từ khóa

#ITPase #mtDNA #biến thể đa hình #ung thư huyết học trưởng thành #nucleotide không điển hình.

Tài liệu tham khảo

Bierau J, Lindhout M, Bakker JA: Pharmacogenetic significance of inosine triphosphatase. Pharmacogenomics. 2007, 8 (9): 1221-1228. 10.2217/14622416.8.9.1221.

Lin S, McLennan AG, Ying K, Wang Z, Gu S, Jin H, Wu C, Liu W, Yuan Y, Tang R: Cloning, expression, and characterization of a human InosineTriphosphate pyrophosphatase encoded by the ITPA gene. J Biol Chem. 2001, 276 (22): 18695-18701. 10.1074/jbc.M011084200.

Sumi S, Marinaki AM, Arenas M, Fairbanks L, Shobowale-Bakre M, Rees DC, Thein SL, Ansari A, Sanderson J, De Abreu RA: Genetic basis of inosine triphosphate pyrophosphohydrolase deficiency. Hum Genet. 2002, 111 (4–5): 360-367.

Galperin MY, Moroz OV, Wilson KS, Murzin AG: House cleaning, a part of good housekeeping. Mol Microbiol. 2006, 59 (1): 5-19. 10.1111/j.1365-2958.2005.04950.x.

Marinaki AM, Ansari A, Duley JA, Arenas M, Sumi S, Lewis CM, Shobowale-Bakre el M, Escuredo E, Fairbanks LD, Sanderson JD: Adverse drug reactions to azathioprine therapy are associated with polymorphism in the gene encoding inosine triphosphate pyrophosphatase (ITPase). Pharmacogenetics. 2004, 14 (3): 181-187. 10.1097/00008571-200403000-00006.

Fellay J, Thompson AJ, Dongliang G, Gumbs CE, Urban T, Shianna KV, Little LD, Qiu P, Bertelsen AH, Watson M: ITPA gene variants protect against anaemia in patients treated for chronic hepatitis C. Nature. 2010, 464: 405-408. 10.1038/nature08825.

Behmanesh M, Sakumi K, Abolhassani N, Toyokuni S, Oka S, Ohnishi NY, Tsuchimoto D, Nakabeppu Y: ITPase-deficient mice show growth retardation and die before weaning. Cell Death Differ. 2009, 16: 1315-1322. 10.1038/cdd.2009.53.

Abolhassani N, Iyama T, Tsuchimoto D, Sakumi K, Ohno M, Behmanesh M, Nakabeppu Y: NUDT16 and ITPA play a dual protective role in maintaining chromosome stability and cell growth by eliminating dIDP/IDP and dITP/ITP from nucleotide pools in mammals. Nucleic Acids Res. 2010, 38 (9): 2891-2903. 10.1093/nar/gkp1250.

Sumi S, Ueta A, Maeda T, Ito T, Ohkubo Y, Togari H: A Japanese case with inosine triphosphate pyrophosphohydrolase deficiency attributable to an enzymatic defect in white blood cells. J Inherit Metab Dis. 2004, 27 (2): 277-278.

Poppe B, Vandesompele J, Schoch C, Lindvall C, Mrozek K, Bloomfield CD, Beverloo HB, Michaux L, Dastugue N, Herens C: Expression analyses identify MLL as a prominent target of 11q23 amplification and support an etiologic role for MLL gain of function in myeloid malignancies. Blood. 2004, 103 (1): 229-235. 10.1182/blood-2003-06-2163.

Menezes MR, Waisertreiger IS, Lopez-Bertoni H, Luo X, Pavlov YI: Pivotal role of inosine triphosphate pyrophosphatase in maintaining genome stability and the prevention of apoptosis in human cells. PLoS One. 2012, 7 (2): 27-

Arenas M, Duley J, Sumi S, Sanderson J, Marinaki A: The ITPA c.94C>A and g.IVS2+21A>C sequence variants contribute to missplicing of the ITPA gene. Biochim Biophys Acta. 2007, 1772: 96-102. 10.1016/j.bbadis.2006.10.006.

Marsh S, King CR, Ahluwalia R, McLeod HL: Distribution of ITPA P32T alleles in multiple world populations. J Hum Genet. 2004, 49: 579-581. 10.1007/s10038-004-0183-y.

Taylor RW, Turnbull DM: Mitochondrial DNA mutations in human disease. Nat Rev Genet. 2005, 6 (5): 389-402.

Ihara H, Sawa T, Nakabeppu Y, Akaike T: Nucleotides function as endogenous chemical sensors for oxidative stress signaling. J Clin Biochem Nutr. 2011, 48 (1): 33-39.

Rai P: Oxidation in the nucleotide pool, the DNA damage response and cellular senescence: Defective bricks build a defective house. Mutat Res. 2010, 703 (1): 71-81. 10.1016/j.mrgentox.2010.07.010.

Tuppen HAL, Blakely EL, Turnbull DM, Taylor RW: Mitochondrial DNA mutations and human disease. Biochim Biophys Acta. 2010, 1797: 113-128.

Carew JS, Huang P: Mitochondrial defects in cancer. Molecular Cancer. 2002, 1 (9): 1-12.

Thieme M, Lottaz C, Niederstätter H, Parson W, Spang R, Oefner PJ: ReseqChip: Automated integration of multiple local context probe data from the MitoChip array in mitochondrial DNA sequence assembly. BMC Bioinforma. 2009, 10 (440): 1-10.

Hartwell L, Hood L, Goldberg ML, Reynolds AE, Silver LM, Veres RC: Genetics: from genes to genomes. 2004, Boston: McGraw-Hill Higher Education, 2

Mileshina D, Ibrahim N, Boesch P, Lightowlers RN, Dietrich A, Weber-Lotfi F: Mitochondrial transfection for studying organellar DNA repair, genome maintenance and aging. Mech Ageing Dev. 2011, 132: 412-423. 10.1016/j.mad.2011.05.002.

Gredilla R: DNA damage and base excision repair inMitochondria and their role in aging. Journal of Aging Research. 2011, 2011: 1-9.

Rossignol R, Faustin B, Rocher C, Malgat M, Mazat JP, Letellier T: Mitochondrial threshold effects. Biochem J. 2003, 370 (Pt 3): 751-762.

Fairbanks LD, Marinaki AM, Carrey EA, Hammans SR, Duley JA: Deoxyuridine accumulation in urine in thymidine phosphorylase deficiency (MNGIE). J Inherit Metab Dis. 2002, 25: 603-604. 10.1023/A:1022007827133.

Marti R, Nishigaki Y, Vila MR, Hirano M: Alteration of nucleotide metabolism: a new mechanism for mitochondrial disorders. Clin Chem Lab Med. 2003, 41 (7): 845-851.

Costello L, Singh K: Mitochondria and cancer. Mitochondria in Hematology. Edited by: Costello L, Singh K. 2009, Springer: New York, 163-185.

Fröhling S, Döhner H: Chromosomal abnormalities in cancer. N Engl J Med. 2008, 359 (7): 722-734. 10.1056/NEJMra0803109.

Lobo I: Chromosome abnormalities and cancer cytogenetics. Nature Education. 2008, 1 (1): http://www.nature.com/scitable/topicpage/chromosome-abnormalities-and-cancer-cytogenetics-879 (accessed March 19, 2013)

Voso MT, Fabiani E, D’Alo F, Guidi F, Di Ruscio A, Sica S, Pagano L, Greco M, Hohaus S, Leone G: Increased risk of acute myeloid leukaemia due to polymorphisms in detoxification and DNA repair enzymes. Ann Oncol. 2007, 18: 1523-1528. 10.1093/annonc/mdm191.

Fabiani E, D’Alo F, Scardocci A, Greco M, Di Ruscio A, Criscuolo M, Fianchi L, Pagano L, Hohaus S, Leone G: Polymorphisms of detoxification and DNA repair enzymes in myelodyplastic syndromes. Leuk Res. 2009, 33: 1068-1071. 10.1016/j.leukres.2008.10.012.

Maitra A, Cohen Y, Gillespie SE, Mambo E, Fukushima N, Hoque MO, Shah N, Goggins M, Califano J, Sidransky D: The Human MitoChip: a high-throughput sequencing microarray for mitochondrial mutation detection. Genome Res. 2004, 14 (5): 812-819. 10.1101/gr.2228504.

Zhou S, Kassauei K, Cutler DJ, Kennedy GC, Sidransky D, Maitra A, Califano J: An oligonucleotide microarray for high-throughput sequencing of the mitochondrial genome. J Mol Diagn. 2006, 8 (4): 476-482. 10.2353/jmoldx.2006.060008.

Kloss-Brandstaetter A, Pacher D, Schoenherr S, Weissensteiner H, Binna R, Specht G, Kronenberg F:HaploGrep: a fast and reliable algorithm for automatic classification of mitochondrial DNA haplogroups. Hum Mutat. 2011, 32 (1): 25-32. 10.1002/humu.21382.

van Oven M, Kayser M: Updated comprehensive phylogenetic tree of global human mitochondrial DNA variation. Hum Mutat. 2009, 30 (2): 386-394. 10.1002/humu.20921.

Kothiyal P, Cox S, Ebert J, Husami A, Kenna MA, Greinwald JH, Aronow BJ, Rehm HL: High-throughput detection of mutations responsible for childhood hearing loss using resequencing microarrays. BMC Biotechnol. 2010, 10 (10): PMID20146813

Marinaki AM, Escuredo E, Duley JA, Simmonds HA, Amici A, Naponelli V, Magni G, Seip M, Ben-Bassat I, Harley EH: Genetic basis of hemolytic anemia caused by pyrimidine 5′ nucleotidase deficiency. Blood. 2001, 97 (11): 3327-3332. 10.1182/blood.V97.11.3327.

Holmes SL, Turner BM, Hirschhorn K: Human inosine triphosphatase: catalytic properties and population studies. Clin Chim Acta. 1979, 97 (2–3): 143-153.

Daehn I, Brem R, Barkauskaite E, Karran P: 6-Thioguanine damages mitochondrial DNA and causes mitochondrial dysfunction in human cells. FEBS Lett. 2011, 585 (24): 3941-3946. 10.1016/j.febslet.2011.10.040.

Penta JS, Johnson FM, Wachsman JT, Copeland WC: Mitochondrial DNA in human malignancy. Mutat Res. 2001, 488: 119-133. 10.1016/S1383-5742(01)00053-9.

Wulferta M, Kuppera AC, Tappricha C, Bottomley SS, Bowenc D, Germinga U, Haasa R, Gattermanna N: Analysis of mitochondrial DNA in 104 patients with myelodysplastic syndromes. Exp Hematol. 2008, 36: 577-586. 10.1016/j.exphem.2008.01.004.

Carew JS, Zhou Y, Albitar M, Carew JD, Keating MJ, Huang P: Mitochondrial DNA mutations in primary leukemia cells after chemotherapy: clinical significance and therapeutic implications. Leukemia. 2003, 17: 1437-1447. 10.1038/sj.leu.2403043.

He L, Luo L, Proctor SJ, Middleton PG, Blakely EL, Taylor RW, Turnbull DM: Somatic mitochondrial DNA mutations in adult-onset leukaemia. Leukemia. 2003, 17: 2487-2491. 10.1038/sj.leu.2403146.

Spee JH, Vos WM, Kuipers OP: Efficient random mutagenesis method with adjustable mutation frequency by use of PCR and dITP. Nucleic Acids Res. 1993, 21 (3): 777-778. 10.1093/nar/21.3.777.

Kamiya H, Shimizu M, Suzuki M, Inoue H, Ohtsuka E: Mutation induced by deoxyxanthosine in codon 12 of a synthetic c-haras gene. Nucleos Nucleot Nucleic Acids. 1992, 11 (2–4): 247-260.

Kamiya H: Mutagenic potentials of damaged nucleic acids produced by reactive oxygen/nitrogen species: approaches using synthetic oligonucleotides and nucleotides: survey and summary. Nucleic Acids Res. 2003, 31 (2): 517-531. 10.1093/nar/gkg137.

Kulikowska E, Kierdaszuk B, Shugar D: Xanthine, xanthosine and its nucleotides: solution structures of neutral and ionic forms, and relevance to substrate properties in various enzyme systems and metabolic pathways. Acta Biochimica Polonica. 2004, 51 (2): 493-531.

Rötig A, Poulton J: Genetic causes of mitochondrial DNA depletion in humans. Biochim Biophys Acta. 2009, 1792: 1103-1108. 10.1016/j.bbadis.2009.06.009.

Zamzami MA, Price GR, Taylor RW, Blakely EL, Oancea I, Bowling F, Duley JA: Insights into N-calls of mitochondrial DNA sequencing using MitoChip v2.0. BMC Res Notes. 2011, 4 (1): 426-10.1186/1756-0500-4-426.

Carney DA, Westerman DA, Tam CS, Milner A, Prince HM, Kenealy M, Wolf M, Januszewicz EH, Ritchie D, Came N: Therapy-related myelodysplastic syndrome and acute myeloid leukemia following fludarabine combination chemotherapy. Leukemia. 2010, 24 (12): 2056-2062. 10.1038/leu.2010.218.