Inorganic–organic nanohybrid of MoS2-PANI for advanced photocatalytic application
Tóm tắt
Từ khóa
Tài liệu tham khảo
Song, I., Park, C., Choi, H.C.: Synthesis and properties of molybdenum disulphide: from bulk to atomic layers. RSC Adv. 5(10), 7495–7514 (2015). https://doi.org/10.1039/C4RA11852A
Chaudhary, N., Khanuja, M., Islam, S.: Hydrothermal synthesis of MoS2 nanosheets for multiple wavelength optical sensing applications. Sens. Actuator A-Phys. 277, 190–198 (2018). https://doi.org/10.1016/j.sna.2018.05.008
Singhal, C., Khanuja, M., Chaudhary, N., Pundir, C., Narang, J.: Detection of chikungunya virus DNA using two-dimensional MoS2 nanosheets based disposable biosensor. Sci. Rep. 8(1), 7734 (2018). https://doi.org/10.1038/s41598-018-25824-8
Li, J., Tang, W., Yang, H., Dong, Z., Huang, J., Li, S., Wang, J., Jin, J., Ma, J.: Enhanced-electrocatalytic activity of Ni1−xFex alloy supported on polyethyleneimine functionalized MoS2 nanosheets for hydrazine oxidation. RSC Adv. 4(4), 1988–1995 (2014). https://doi.org/10.1039/C3RA42757A
Zeng, X., Niu, L., Song, L., Wang, X., Shi, X., Yan, J.: Effect of polymer addition on the structure and hydrogen evolution reaction property of nanoflower-like molybdenum disulfide. Metals 5(4), 1829–1844 (2015). https://doi.org/10.3390/met5041829
Siddiqui, I., Mittal, H., Kohli, V.K., Gautam, P., Ali, M., Khanuja, M.: Hydrothermally synthesized micron sized, broom-shaped MoSe2 nanostructures for superior photocatalytic water purification. Mater. Res. Express 5(12), 125020 (2018). https://doi.org/10.1088/2053-1591/aae241
Ma, L., Chen, W.-X., Xu, Z.-D., Xia, J.-B., Li, X.: Carbon nanotubes coated with tubular MoS2 layers prepared by hydrothermal reaction. Nanotechnology 17(2), 571 (2006). https://doi.org/10.1088/0957-4484/17/2/038
Huang, G., Chen, T., Chen, W., Wang, Z., Chang, K., Ma, L., Huang, F., Chen, D., Lee, J.Y.: Graphene-like MoS2/graphene composites: cationic surfactant-assisted hydrothermal synthesis and electrochemical reversible storage of lithium. Small 9(21), 3693–3703 (2013). https://doi.org/10.1002/smll.201300415
Singh, S., Sharma, R., Khanuja, M.: A review and recent developments on strategies to improve the photocatalytic elimination of organic dye pollutants by BiOX (X = Cl, Br, I, F) nanostructures. Korean J. Chem. Eng. 35, 1955 (2018). https://doi.org/10.1007/s11814-018-0112-y
Singh, S., Ruhela, A., Rani, S., Khanuja, M., Sharma, R.: Concentration specific and tunable photoresponse of bismuth vanadate functionalized hexagonal ZnO nanocrystals based photoanodes for photoelectrochemical application. Solid State Sci. 76, 48–56 (2018). https://doi.org/10.1016/j.solidstatesciences.2017.12.003
Boeva, Z.A., Sergeyev, V.: Polyaniline: synthesis, properties, and application. Polym. Sci. Ser. C 56(1), 144–153 (2014). https://doi.org/10.1134/S1811238214010032
Sharma, R., Khanuja, M., Islam, S., Singhal, U., Varma, A.: Aspect-ratio-dependent photoinduced antimicrobial and photocatalytic organic pollutant degradation efficiency of ZnO nanorods. Res. Chem. Intermed. 43(10), 5345–5364 (2017). https://doi.org/10.1007/s11164-017-2930-7
Deng, Y., Tang, L., Zeng, G., Dong, H., Yan, M., Wang, J., Hu, W., Wang, J., Zhou, Y., Tang, J.: Enhanced visible light photocatalytic performance of polyaniline modified mesoporous single crystal TiO2 microsphere. Appl. Surf. Sci. 387, 882–893 (2016). https://doi.org/10.1016/j.apsusc.2016.07.026
Zhang, N., Ma, W., Wu, T., Wang, H., Han, D., Niu, L.: Edge-rich MoS2 naonosheets rooting into polyaniline nanofibers as effective catalyst for electrochemical hydrogen evolution. Electrochim. Acta 180, 155–163 (2015). https://doi.org/10.1016/j.electacta.2015.08.108
Ren, L., Zhang, G., Yan, Z., Kang, L., Xu, H., Shi, F., Lei, Z., Liu, Z.-H.: Three-dimensional tubular MoS2/PANI hybrid electrode for high rate performance supercapacitor. ACS Appl. Mater. Interfaces. 7(51), 28294–28302 (2015). https://doi.org/10.1021/acsami.5b08474
Chang, K.C., Hsu, C.H., Peng, C.W., Huang, Y.Y., Yeh, J.M., Wan, H.P., Hung, W.C.: Preparation and comparative properties of membranes based on PANI and three inorganic fillers. Express Polym. Lett. 8(3), 207–218 (2014). https://doi.org/10.3144/expresspolymlett.2014.24
Popa, A., Plesu, N., Sasca, V., Kis, E.E., Marinkovic-Neducin, R.: Physicochemical features of polyaniline supported heteropolyacids. J. Optoelectron. Adv. Mater. 8(5), 1944–1950 (2006)
Kondawar, S., Deshpande, M., Agrawal, S.: Transport properties of conductive polyaniline nanocomposites based on carbon nanotubes. Int. J. Compos. Mater. 2(3), 32–36 (2015). https://doi.org/10.5923/j.cmaterials.20120203.03
Haldorai, Y., Shim, J.-J.: Synthesis of polyaniline/Q-CdSe composite via ultrasonically assisted dynamic inverse emulsion polymerization. Colloid Polym. Sci. 289(7), 849–854 (2011). https://doi.org/10.1007/s00396-011-2400-5
Gao, Y., Chen, C., Tan, X., Xu, H., Zhu, K.: Polyaniline-modified 3D-flower-like molybdenum disulfide composite for efficient adsorption/photocatalytic reduction of Cr(VI). J. Colloid Interface Sci. 476, 62–70 (2016). https://doi.org/10.1016/j.jcis.2016.05.022
Yuwen, L., Xu, F., Xue, B., Luo, Z., Zhang, Q., Bao, B., Su, S., Weng, L., Huang, W., Wang, L.: General synthesis of noble metal (Au, Ag, Pd, Pt) nanocrystal modified MoS2 nanosheets and the enhanced catalytic activity of Pd–MoS2 for methanol oxidation. Nanoscale 6(11), 5762–5769 (2014). https://doi.org/10.1039/c3nr06084e
Patil, P.T., Anwane, R.S., Kondawar, S.B.: Development of electrospun polyaniline/ZnO composite nanofibers for LPG sensing. Procedia Mater. Sci. 10, 195–204 (2015). https://doi.org/10.1016/j.mspro.2015.06.041
Hu, F., Li, W., Zhang, J., Meng, W.: Effect of graphene oxide as a dopant on the electrochemical performance of graphene oxide/polyaniline composite. J. Mater. Res. Technol. 30(4), 321–327 (2014). https://doi.org/10.1016/j.jmst.2013.10.009
Gogoi, G., Arora, S., Vinothkumar, N., De, M., Qureshi, M.: Quaternary semiconductor Cu2ZnSnS4 loaded with MoS2 as a co-catalyst for enhanced photo-catalytic activity. RSC Adv. 5(51), 40475–40483 (2015). https://doi.org/10.1039/C5RA03401A
Hu, L., Ren, Y., Yang, H., Xu, Q.: Fabrication of 3D hierarchical MoS2/polyaniline and MoS2/C architectures for lithium-ion battery applications. ACS Appl. Mater. Interfaces. 6(16), 14644–14652 (2014). https://doi.org/10.1021/am503995s
Khanuja, M., Mehta, B.R., Shivaprasad, S.M.: J. Chem. Sci. 120, 573–578 (2008). https://doi.org/10.1007/s12039-008-0087-z
Khanuja, M., Kala, S., Mehta, B.R., Sharma, H., Shivaprasad, S.M., Balamurgan, B., Kruis, F.E.: XPS and AFM studies of monodispersed Pb/PbO core–shell nanostructures. J. Nanosci. Nanotechnol. 7(6), 2096–2100 (2007). https://doi.org/10.1166/jnn.2007.776
Binkauskienė, E., Jasulaitienė, V., Lugauskas, A.: Effect of Aspergillus niger Tiegh L-10 on the physical and chemical properties of a polyaniline coating in the growth substrate. Synth. Met. 159(13), 1365–1368 (2009). https://doi.org/10.1016/j.synthmet.2009.03.011
Huang, Q., Liu, M., Chen, J., Wan, Q., Tian, J., Huang, L., Jiang, R., Wen, Y., Zhang, X., Wei, Y.: Facile preparation of MoS2 based polymer composites via mussel inspired chemistry and their high efficiency for removal of organic dyes. Appl. Surf. Sci. 419, 35–44 (2017). https://doi.org/10.1016/j.apsusc.2017.05.006
Massey, A.T., Gusain, R., Kumari, S., Khatri, O.P.: Hierarchical microspheres of MoS2 nanosheets: efficient and regenerative adsorbent for removal of water-soluble dyes. Ind. Eng. Chem. Res. 55(26), 7124–7131 (2016). https://doi.org/10.1021/acs.iecr.6b01115
Han, S., Liu, K., Hu, L., Teng, F., Yu, P., Zhu, Y.J.S.R.: Superior adsorption and regenerable dye adsorbent based on flower-like molybdenum disulfide nanostructure. Sci Rep. 7, 43599 (2017). https://doi.org/10.1038/srep43599
Ashraf, W., Fatima, T., Srivastava, K., Khanuja, M.: Superior photocatalytic activity of tungsten disulfide nanostructures: role of morphology and defects. Appl. Nanosci. (2019). https://doi.org/10.1007/s13204-019-00951-4
Takijiri, K., Morita, K., Nakazono, T., Sakai, K., Ozawa, H.: Highly stable chemisorption of dyes with pyridyl anchors over TiO2: application in dye-sensitized photoelectrochemical water reduction in aqueous media. Chem. Commun. 53(21), 3042–3045 (2017). https://doi.org/10.1039/C6CC10321A
Qiao, X.Q., Hu, F.C., Tian, F.Y., Hou, D.F., Li, D.S.: Equilibrium and kinetic studies on MB adsorption by ultrathin 2D MoS2 nanosheets. Rsc Adv. 6(14), 11631–11636 (2016). https://doi.org/10.1039/C5RA24328A
Li, J., Hou, Y., Gao, X., Guan, D., Xie, Y., Chen, J., Yuan, C.: A three-dimensionally interconnected carbon nanotube/layered MoS2 nanohybrid network for lithium ion battery anode with superior rate capacity and long-cycle-life. Nano Energy 16, 10–18 (2015). https://doi.org/10.1016/j.nanoen.2015.05.025
Li, X., Cubbage, J.W., Jenks, W.S.: Photocatalytic degradation of 4-chlorophenol. 2. The 4-chlorocatechol pathway. J. Org. Chem. 64(23), 8525–8536 (1999). https://doi.org/10.1021/jo990912n
Nguyen, A.T., Juang, R.-S.: Photocatalytic degradation of p-chlorophenol by hybrid H2O2 and TiO2 in aqueous suspensions under UV irradiation. J. Environ. Manag. 147, 271–277 (2015)
Bian, W., Song, X., Liu, D., Zhang, J., Chen, X.: The intermediate products in the degradation of 4-chlorophenol by pulsed high voltage discharge in water. J. Hazard. Mater. 192(3), 1330–1339 (2011). https://doi.org/10.1016/j.jhazmat.2011.06.045
Al-Sayyed, G., D’Oliveira, J.-C., Pichat, P.: Semiconductor-sensitized photodegradation of 4-chlorophenol in water. J. Photochem. Photobiol. A Chem. 58(1), 99–114 (1991). https://doi.org/10.1016/1010-6030(91)87101-Z
Tan, S., Zhai, J., Wan, M., Meng, Q., Li, Y., Jiang, L., Zhu, D.: Influence of small molecules in conducting polyaniline on the photovoltaic properties of solid-state dye-sensitized solar cells. J. Phys. Chem. B. 108(48), 18693–18697 (2004). https://doi.org/10.1021/jp046574y
Ameen, S., Akhtar, M.S., Kim, Y.S., Yang, O.-B., Shin, H.-S.: An effective nanocomposite of polyaniline and ZnO: preparation, characterizations, and its photocatalytic activity. Colloid Polym. Sci. 289(4), 415–421 (2011). https://doi.org/10.11113/mjfas.v0n0.562