Inorganic caesium lead iodide perovskite solar cells

Journal of Materials Chemistry A - Tập 3 Số 39 - Trang 19688-19695
Giles E. Eperon1,2,3,4, Giuseppe M. Paternò5,6,7,8, D. K. Maude1,2,3,4, Andrea Zampetti5,6,7,8, Amir A. Haghighirad1,2,3,4, Franco Cacialli5,6,7,8, Henry J. Snaith1,2,3,4
1Clarendon Laboratory
2Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, OX1 3PU, UK
3Oxford OX1 3PU
4University of Oxford.
5Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK
6London Centre for Nanotechnology
7London Centre for Nanotechnology, University College London, Gordon Street, London WC1E 6BT, UK
8London WC1E 6BT

Tóm tắt

The vast majority of perovskite solar cell research has focused on organic–inorganic lead trihalide perovskites; herein, we present working inorganic CsPbI3perovskite solar cells for the first time.

Từ khóa


Tài liệu tham khảo

Kojima, 2009, J. Am. Chem. Soc., 131, 6050, 10.1021/ja809598r

Lee, 2012, Science, 338, 643, 10.1126/science.1228604

Burschka, 2013, Nature, 499, 316, 10.1038/nature12340

Jeon, 2015, Nature, 517, 476, 10.1038/nature14133

Zhou, 2014, Science, 345, 542, 10.1126/science.1254050

NREL , Best Research-Cell Efficiencies, http://www.nrel.gov/ncpv/images/efficiency_chart.jpg, 2015

Eperon, 2014, Energy Environ. Sci., 7, 982, 10.1039/c3ee43822h

Stoumpos, 2013, Inorg. Chem., 52, 9019, 10.1021/ic401215x

Stranks, 2013, Science, 342, 341, 10.1126/science.1243982

D'Innocenzo, 2014, Nat. Commun., 5, 3586, 10.1038/ncomms4586

Wehrenfennig, 2014, Adv. Mater., 26, 1584, 10.1002/adma.201305172

Leijtens, 2014, ACS Nano, 8, 7155, 10.1021/nn502115k

Unger, 2014, Energy Environ. Sci., 7, 3690, 10.1039/C4EE02465F

Snaith, 2014, J. Phys. Chem. Lett., 5, 1511, 10.1021/jz500113x

Christians, 2015, J. Phys. Chem. Lett., 6, 852, 10.1021/acs.jpclett.5b00289

Zhang, 2015, Mater. Horiz., 2, 315, 10.1039/C4MH00238E

Xiao, 2015, Nat. Mater., 14, 193, 10.1038/nmat4150

Min Zhang, 2015, Phys. Chem. Chem. Phys., 17, 9613, 10.1039/C5CP00416K

Beilsten-Edmands, 2015, Appl. Phys. Lett., 106, 173502, 10.1063/1.4919109

Sanchez, 2014, J. Phys. Chem. Lett., 5, 2357, 10.1021/jz5011187

Frost, 2014, APL Mater., 2, 81506, 10.1063/1.4890246

Kutes, 2014, J. Phys. Chem. Lett., 5, 3335, 10.1021/jz501697b

Liu, 2015, J. Phys. Chem. Lett., 6, 693, 10.1021/jz502666j

Chen, 2014, J. Phys. Chem. Lett., 6, 164, 10.1021/jz502429u

Chen, 2012, Appl. Phys. Lett., 101, 093901, 10.1063/1.4748888

Kumar, 2014, Adv. Mater., 26, 7122, 10.1002/adma.201401991

Noel, 2014, Energy Environ. Sci., 7, 3061, 10.1039/C4EE01076K

Kulbak, 2015, J. Phys. Chem. Lett., 6, 2452, 10.1021/acs.jpclett.5b00968

Møller, 1959, Mat.-Fys. Medd. - K. Dan. Vidensk. Selsk., 32, 3

Choi, 2014, Nano Energy, 7, 80, 10.1016/j.nanoen.2014.04.017

Protesescu, 2015, Nano Lett., 15, 3692, 10.1021/nl5048779

Yunakova, 2012, Opt. Spectrosc., 112, 91, 10.1134/S0030400X12010249

Moller, 1958, Nature, 182, 1436, 10.1038/1821436a0

Eperon, 2014, Energy Environ. Sci., 7, 982, 10.1039/c3ee43822h

Heo, 2015, Energy Environ. Sci., 8, 1602, 10.1039/C5EE00120J

Jang, 2008, Phys. Rev. Lett., 101, 3

Hatt, 2010, Phys. Rev. B: Condens. Matter Mater. Phys., 81, 1, 10.1103/PhysRevB.81.054109

Tokura, 2000, Science, 288, 462, 10.1126/science.288.5465.462

Tsui, 2000, Appl. Phys. Lett., 76, 2421, 10.1063/1.126363

Li, 2006, Appl. Phys. Lett., 88, 3

Nguyen, 2014, J. Am. Chem. Soc., 136, 10996, 10.1021/ja504539w

Jeon, 2015, Nature, 517, 476, 10.1038/nature14133

Yang, 2015, Science, 348, 1234, 10.1126/science.aaa9272

Tress, 2015, Energy Environ. Sci., 8, 995, 10.1039/C4EE03664F

Zhao, 2015, Energy Environ. Sci., 8, 1256, 10.1039/C4EE04064C

Wojciechowski, 2014, ACS Nano, 8, 12701, 10.1021/nn505723h

Conings, 2015, Adv. Energy Mater., 5, 10.1002/aenm.201500477