Inorganic CsPbI3 Perovskite‐Based Solar Cells: A Choice for a Tandem Device

Solar RRL - Tập 1 Số 7 - 2017
Waqar Ahmad1, Jahangeer Khan1, Liduo Wang1, Jiang Tang1
1G. Niu, J. Tang, W. Ahmad, J. Khan Wuhan National Laboratory for Optoelectronics (WNLO) and School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan Hubei 430074 China

Tóm tắt

Hygroscopicity risk and organic–inorganic hybrid perovskites easy decomposition in solar cells limit their usefulness. Apart from the hybrid organic–inorganic perovskites, inorganic perovskite solar cells display a better stability toward moisture, light soaking, and thermal stressing. However, most inorganic perovskites are inappropriate for single junction or tandem solar cells due to their large bandgaps (>1.8 eV), which eventually results in light absorption loss. Fortunately, cubic CsPbI3 perovskite (having 1.73 eV bandgap) could potentially serve as top cells in tandem devices with silicon solar cells. Poor phase stability of CsPbI3 is considered a major obstacle to design CsPbI3 perovskite solar cells. This review highlights the most recent studies on the progress in CsPbI3‐based solar cell device field. Moreover, this review also summarizes certain strategies to improve phase stability, such as size reduction to nanocrystal or external cations/anions doping, with the aim to improve the devices design.

Từ khóa


Tài liệu tham khảo

10.1038/nenergy.2015.15

10.1038/nnano.2012.166

10.1002/adma.201502999

10.1038/nenergy.2017.32

10.1002/pip.2728

10.1109/JPHOTOV.2014.2352151

10.1109/JPHOTOV.2014.2350695

10.1038/ncomms8730

10.1109/JPHOTOV.2013.2276484

10.1039/C6EE01047D

https://www.nrel.gov/pv/assets/images/efficiency‐chart.png.

10.1038/nenergy.2017.9

10.1002/aenm.201700228

10.1063/1.4905177

10.1021/acs.jpclett.5b02686

10.1021/acs.jpclett.5b01608

10.1038/nenergy.2016.137

10.1021/acs.jpclett.5b02495

10.1038/ncomms3885

10.1002/aenm.201500477

10.1039/C6EE02016J

10.1021/acs.jpclett.5b02597

10.1002/adma.201605290

10.1021/acsenergylett.6b00341

10.1038/1821436a0

10.1039/C5TA06398A

10.1016/j.solmat.2015.09.041

10.1021/nl5048779

10.1002/adma.201502567

10.1021/acs.nanolett.6b00635

10.1126/science.aah5557

10.1021/acs.chemmater.5b04107

10.1039/C4SC02211D

10.1039/C5EE03874J

10.1021/jacs.5b13294

10.1021/jacs.7b01629

10.1002/aenm.201502458

10.1126/science.aag2700

10.1038/nature18306

10.1021/acs.jpclett.6b00248

10.1021/acs.chemrev.5b00715

10.1039/C5CC03615A

10.1002/adma.201600594

10.1038/ncomms11105

10.1021/acs.jpclett.6b01576

10.1021/jacs.6b04661

10.1016/j.nanoen.2014.04.017

10.1002/aenm.201502202

10.1021/acs.jpclett.6b00002

10.1021/acs.nanolett.5b05077

10.1021/acs.jpclett.6b02594

10.1021/nn204296b

10.1021/nl504701y

10.1126/science.aad1015

10.1002/adma.201404189

10.1002/adma.201600619

10.1038/nnano.2015.230

10.1021/acsphotonics.6b00582