Tiêm chủng hạt ngô với Pseudomonas putida dẫn đến sự tăng trưởng cây con được cải thiện kết hợp với việc điều chỉnh miRNA và enzyme chống oxy hóa

Symbiosis - Tập 81 - Trang 271-285 - 2020
Fatma Aydinoglu1, Omer Iltas1, Ozlem Akkaya1
1Molecular Biology and Genetics Department, Gebze Technical University, Kocaeli, Turkey

Tóm tắt

Vi khuẩn tương tác tích cực với rễ thực vật được định nghĩa là vi khuẩn kích thích sinh trưởng thực vật (PGPR). Mặc dù tác động tích cực của PGPR đối với sự phát triển của thực vật đã được nghiên cứu rộng rãi, nhưng ảnh hưởng của chúng đến việc điều chỉnh gene trong các quá trình phát triển của thực vật vẫn phần lớn chưa được biết đến. Do đó, nghiên cứu này nhằm mục đích hiểu sâu hơn về vai trò điều chỉnh của miRNA và enzyme redox trong phản ứng với PGPR ở giai đoạn cây con của ngô trong khu vực phát triển lá, bao gồm phần meristem, kéo dài và chín muồi. Để thực hiện mục đích này, sự phát triển của lá thứ ba đã được theo dõi trong phản ứng với Pseudomonas putida (P. putida) KT2440 ở các cấp độ hình thái, sinh lý, tế bào, kinematic và phiên mã. Việc ứng dụng này đã dẫn đến việc tăng 15% chiều dài chồi, 56% cả trọng lượng tươi/khô của chồi, 10% lượng chlorophyll, 8% chiều dài tế bào trưởng thành, 15% tỷ lệ kéo dài lá và 7% sản xuất tế bào; trong khi chiều dài lá cuối cùng không thay đổi, diện tích lá và chiều rộng lá giảm lần lượt 22% và 16%. Hoạt động của ascorbate peroxidase và glutathione reductase tăng lên trong suốt khu vực phát triển lá, cho thấy vai trò có thể có trong tương tác PGPR-thực vật trong quá trình chuyển tiếp giữa phân chia tế bào, mở rộng và biệt hóa. Phân tích biểu hiện của các gene đánh dấu kiểm soát chu kỳ tế bào cho thấy CycA2_1 chủ yếu chịu trách nhiệm thúc đẩy sự sinh sôi tế bào ở meristem. miR160, miR169 và miR408 được biểu hiện khác nhau trong meristem, cho thấy vai trò điều chỉnh gián tiếp của chúng trong phản ứng phân chia tế bào đối với PGPR. Ngoài ra, miR160, miR319 và miR396 được giảm biểu hiện trong khu vực kéo dài, điều này thu hút sự chú ý đến vai trò có thể của chúng trong việc điều chỉnh các quá trình kéo dài tế bào. Tóm lại, chu kỳ tế bào, redox và sự điều chỉnh miRNA trong các khu vực phát triển của cây con ngô phản ứng với P. putida đã được điều tra lần đầu tiên trong nghiên cứu này.

Từ khóa

#PGPR #miRNA #enzyme chống oxy hóa #Pseudomonas putida #cây con ngô

Tài liệu tham khảo

Aebi HE (1984) Catalase in vitro. Methods Enzymol 105:121–126. https://doi.org/10.1016/S0076-6879(84)05016-3 Aguiar NO, Olivares FL, Novotny EH, Canellas LP (2018) Changes in metabolic profiling of sugarcane leaves induced by endophytic diazotrophic bacteria and humic acids. PeerJ 6:e5445. https://doi.org/10.7717/peerj.5445 Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410 Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399. https://doi.org/10.1146/annurev.arplant.55.031903.141701 Avramova V, AbdElgawad H, Zhang Z, Fotschki B, Casadevall R, Vergauwen L, Knapen D, Taleisnik E, Guisez Y, Asard H, Gerrit TSB (2015) Drought induces distinct growth response, protection, and recovery mechanisms in the maize leaf growth zone. Plant Physiol 169:1382–1396 Avramova V, AbdElgawad H, Vasileva I, Petrova AS, Holek A, Mariën J, Asard H, Beemster GT (2017) High antioxidant activity facilitates maintenance of elcl division in leaves of drought tolerant maize hybrids. Front Plant Sci 8:84. https://doi.org/10.3389/fpls.2017.00084 Aydinoglu F (2020) Elucidating the regulatory roles of microRNAs in maize (Zea mays L.) leaf growth response to chilling stress. Planta 251:38. https://doi.org/10.1007/s00425-019-03331-y Aydinoglu F, Lucas SJ (2019) Identification and expression profiles of putative leaf growth related microRNAs in maize (Zea mays L.) hybrid ADA313. Gene 690:57–67. https://doi.org/10.1016/j.gene.2018.12.042 Backer R, Rokem JS, Ilangumaran G, Lamont J, Praslickova D, Ricci E, Subramanian S, Smith DL (2018) Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Front Plant Sci 9:1473. https://doi.org/10.3389/fpls.2018.01473 Banowetza GM, Dierksena KP, Azevedoa MD, Stout R (2004) Microplate quantification of plant leaf superoxide dismutases. Anal Biochem 332:314–320. https://doi.org/10.1016/j.ab.2004.06.015 Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297 Bartel B, Bartel DP (2003) MicroRNAs: at the root of plant development? Plant Physiol 132:709–717 Beemster GTS, Baskin TI (1998) Analysis of cell division and elongation underlying the developmental acceleration of root growth in Arabidopsis thaliana. Plant Physiol 116(4):1515–1526. https://doi.org/10.1104/pp.116.4.1515 Beemster GTS, Fiorani F, Inze D (2003) Cell cycle: the key to plant growth control. Trends Plant Sci 8:154–158 Beemster GTS, de Veylder L, Vercruysse S, West G, Rombaut D, van Hummelen P, Galichet A, Gruissem W, Inzé D, Vuylsteke M (2005) Genome-wide analysis of gene expression profiles associated with cell cycle transitions in growing organs of Arabidopsis. Plant Physiol 138:734–743 Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principal of protein-dye binding. Anal Biochem 72:248e254 Camilios-Neto D, Bonato P, Wassem R, Tadra-Sfeir MZ, Brusamarello-Santos LC, Valdameri G, Donatti L, Faoro H, Weiss VA, Chubatsu LS, Pedrosa FO, Souza EM (2014) Dual RNA-seq transcriptional analysis of wheat roots colonized by Azospirillum brasilense reveals up-regulation of nutrient acquisition and cell cycle genes. BMC Genomics 15:378. https://doi.org/10.1186/1471-2164-15-378 Carlberg I, Mannervik EB (1975) Glutathione level in rat brain. J Biol Chem 250:4475–4480 Castillo FJ (1992) Peroxidase and stress. In: Penel C, Gaspar T, Greppin H (eds) Plant Peroxidases 1980-1990. Topics and detailed literature on molecular, biochemical and physiological aspects. University of Geneva, Geneva, pp 87–203 Chance B, Maehly AC (1955) Assay of catalases and peroxidases. Methods Biochem Anal 1:357–424. https://doi.org/10.1002/9780470110171.ch14 Chen Z, Gallie DR (2006) Dehydroascorbate reductase affects leaf growth, development, and function. Plant Physiol 142:775–787 Considine MJ, Foyer CH (2014) Redox regulation of plant development. Antioxid Redox Signal 21(9):1305–1326. https://doi.org/10.1089/ars.2013.5665 de Vries S, de Vries J, Rose LE (2019) The elaboration of miRNA regulation and gene regulatory networks in plant-microbe interactions. Genes (Basel) 10(4):E310. https://doi.org/10.3390/genes10040310 Debernardi JM, Mecchia MA, Vercruyssen L, Smaczniak C, Kaufmann K, Inze D, Rodriguez RE, Palatnik JF (2014) Post-transcriptional control of GRF transcription factors by microRNA miR396 and GIF co-activator affects leaf size and longevity. Plant J 79:413–426. https://doi.org/10.1111/tpj.12567 Dewitte W, Murray JAH (2003) The plant cell cycle. Annu Rev Plant Biol 54:235–264. https://doi.org/10.1146/annurev.arplant.54.031902.134836 Ercoli MF, Rojas AML, Debernardi JM, Palatnik JF, Rodriguez RE (2016) Control of cell proliferation and elongation by miR396. Plant Signal Behav 11(6):e1184809. https://doi.org/10.1080/15592324.2016.1184809 Espinosa-Urgel M, Ramos JL (2004) Cell density-dependent gene contributes to efficient seed colonization by Pseudomonas putida KT2440. Appl Environ Microbiol 70(9):5190–5198. https://doi.org/10.1128/aem.70.9.5190-5198.2004 Ferjani A, Horiguchi G, Yano S, Tsukaya H (2007) Analysis of leaf development in fugu mutants of Arabidopsis reveals three compensation modes that modulate cell expansion in determinate organs. Plant Physiol 144(2):988–999 Fernández-Piñar R, Espinosa-Urgel M, Dubern JF, Heeb S, Ramos JL, Cámara M (2012) Fatty acid-mediated signaling between two Pseudomonas species. Environ Microbiol Rep 4:417–423. https://doi.org/10.1111/j.1758-2229.2012.00349.x Fiorani F, Beemster GTS, Bultynck L, Lambers H (2000) Can meristematic activity determine variation in leaf size and elongation rate among four Poa species? A kinematic study. Plant Physiol 124:845–856 Foreman J, Demidchik V, Bothwell JHF, Mylona P, Miedema H, Torres MA, Linstead P, Costa S, Brownlee C, Jones JD, Davies JM, Dolan L (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422:442–446 Gilbertson AW, Fitch MW, Burken JG, Wood TK (2007) Transport and survival of GFP-tagged root-colonizing microbes: implications for rhizo degradation. Eur J Soil Biol 43:224–232. https://doi.org/10.1016/j.ejsobi.2007.02.005 Gravel V, Antoun H, Tweddell RJ (2007) Growth stimulation and fruit yield improvement of greenhouse tomato plants by inoculation with Pseudomonas putida or Trichoderma atroviride: possible role of indole acetic acid (IAA). Soil Biol Biochem 39:1968–1977. https://doi.org/10.1016/j.soilbio.2007.02.015 Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ (2008) miRBase: tools for microRNA genomics. Nucleic Acids Res 36:154–158 Guilfoyle TJ, Ulmasov T, Hagen G (1998) The ARF family of transcription factors and their role in plant hormone-responsive transcription. Cell Mol Life Sci 54:619–627 Gupta A, Gopal M, Tilak KV (2000) Mechanism of plant growth promotion by rhizobacteria. Indian J Exp Biol 38:856–862 Horiguchi G, Ferjani A, Fujikura U, Tsukaya H (2006) Coordination of cell proliferation and cell expansion in the control of leaf size in Arabidopsis thaliana. J Plant Res 119(1):37–42 Inze D, Veylder L (2006) Cell cycle regulation in plant development. Annu Rev Genet 40:77–105 Jatan R, Chauhan PS, Lata C (2019a) Pseudomonas putida modulates the expression of miRNAs and their target genes in response to drought and salt stresses in chickpea (Cicer arietinum L.). Genomics 111(4):509–519. https://doi.org/10.1016/j.ygeno.2018.01.007 Jatan R, Tiwari S, Asif MH, Lata C (2019b) Genome-wide profiling reveals extensive alterations in Pseudomonas putida-mediated miRNAs expression during drought stress in chickpea (Cicer arietinum L.). Environ Exp Bot 157:217–227. https://doi.org/10.1016/j.envexpbot.2018.10.003 Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol 57:19–53. https://doi.org/10.1146/annurev.arplant.57.032905.105218 Kaushal M, Wani SP (2016) Rhizobacterial-plant interactions: strategies ensuring plant growth promotion under drought and salinity stress. Agric Ecosyst Environ 231:68–78. https://doi.org/10.1016/j.agee.2016.06.031 Kayihan DS, Kayihan C, Ciftci YO (2016) Excess boron responsive regulations of antioxidative mechanism at physio-biochemical and molecular levels in Arabidopsis thaliana. Plant Physiol Biochem 109:337–345. https://doi.org/10.1016/j.plaphy.2016.10.016 Kellogg EA (2001) Evolutionary history of the grasses. Plant Physiol 125:1198–1205. https://doi.org/10.1104/pp.125.3.1198 Khraiwesh B, Zhu JK, Zhu J (2012) Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochim Biophys Acta 1819(2):137–148. https://doi.org/10.1016/j.bbagrm.2011.05.001 Kim JH, Tsukaya H (2015) Regulation of plant growth and development by the GROWTH-REGULATING FACTOR and GRF-INTERACTING FACTOR duo. J Exp Bot 66(20):6093–6107. https://doi.org/10.1093/jxb/erv349 Kloepper JW, Leong J, Teintze M, Schroth N (1980) Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286:885–886 Kohler J, Hernández JA, Caravaca F, Roldán A (2008) Plant-growth-promoting rhizobacteria and arbuscular mycorrhizal fungi modify alleviation biochemical mechanisms in water-stressed plants. Funct Plant Biol 35(2):141–151. https://doi.org/10.1071/fp07218 Kono Y (1978) Generation of superoxide radical during autoxidation of hydroxylamine and an assay for superoxide dismutase. Arch Biochem Biophys 186:189–195. https://doi.org/10.1016/0003-9861(78)90479-4 Koyama T, Fumihiko S, Ohme-Takagi M (2017) Roles of miR319 and TCP transcription factors in leaf development. Plant Physiol 175(2):874–885. https://doi.org/10.1104/pp.17.00732 Kunkel BN, Harper CP (2018) The roles of auxin during interactions between bacterial plant pathogens and their hosts. J Exp Bot 69(2):245–254. https://doi.org/10.1093/jxb/erx447 Li WX, Oono Y, Zhu J, He XJ, Wu JM, Iida K, Lu XY, Cui X, Jin H, Zhu JK (2008) The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance. Plant Cell 20(8):2238–2251. https://doi.org/10.1105/tpc.108.059444 Li P, Ponnala L, Gandotra N, Wang L, Si Y, Tausta SL, Kebrom TH, Provart N, Patel R, Myers CR, Reidel EJ, Turgeon R, Liu P, Sun Q, Nelson T, Brutnell TP (2010) The developmental dynamics of the maize leaf transcriptome. Nat Genet 42:1060–1067. https://doi.org/10.1038/ng.703 Liberman LM, Sparks EE, Moreno-Risueno MA, Petricka JJ, Benfey PN (2015) MYB36 regulates the transition from proliferation to differentiation in the Arabidopsis root. Proc Natl Acad Sci U S A 112(39):12099–12104. https://doi.org/10.1073/pnas.1515576112 Liszkay A, van der Zalm E, Schopfer P (2004) Production of reactive oxygen intermediates (O2.-, H2O2, and .OH) by maize roots and their role in wall loosening and elongation growth. Plant Physiol 136:3114–3123. https://doi.org/10.1104/pp.104.044784 López-Bucio J, Campos-Cuevas JC, Hernández-Calderón E, Velásquez-Becerra C, Farías-Rodríguez R, Macías-Rodríguez LI, Valencia-Cantero E (2007) Bacillus megaterium rhizobacteria promote growth and alter root-system architecture through an auxin- and ethylene-independent signaling mechanism in Arabidopsis thaliana. Mol Plant-Microbe Interact 20(2):207–217 Mallory AC, Bartel DP, Bartel B (2005) MicroRNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR17 is essential for proper development and modulates expression of early auxin response genes. Plant Cell 17(5):1360–1375. https://doi.org/10.1105/tpc.105.031716 Marowa P, Ding A, Kong Y (2016) Expansins: roles in plant growth and potential applications in crop improvement. Plant Cell Rep 35(5):949–965. https://doi.org/10.1007/s00299-016-1948-4 Matilla MA, Ramos JL, Bakker PA, Doornbos R, Badri DV, Vivanco JM, Ramos-González MI (2010) Pseudomonas putida KT2440 causes induced systemic resistance and changes in Arabidopsis root exudation. Environ Microbiol Rep 2(3):381–388. https://doi.org/10.1111/j.1758-2229.2009.00091.x Mecchia MA, Debernardi JM, Rodriguez RE, Schommer C, Palatnik JF (2013) MicroRNA miR396 and RDR6 synergistically regulate leaf development. Mech Dev 130(1):2–13. https://doi.org/10.1016/j.mod.2012.07.005 Megha S, Basu U, Kav NNV (2018) Regulation of low temperature stress in plants by microRNAs. Plant Cell Environ 41:1–15. https://doi.org/10.1111/pce.12956 Molina-Romero D, Baez A, Quintero-Hernandez V, Castañeda-Lucio M, Fuentes-Ramirez LE, Bustillos-Cristales MDR, Rodríguez-Andrade O, Morales-Garcia YE, Munive A, Muñoz-Rojas J (2017) Compatible bacterial mixture, tolerant to desiccation, improves maize plant growth. PLoS One 12(11):e0187913. https://doi.org/10.1371/journal.pone.0187913 Nadeem SM, Naveed M, Ayyub M, Khan MY, Ahmad M, Zahir ZA (2016) Potential, limitations and future prospects of Pseudomonas spp. for sustainable agriculture and environment: a review. Soil Environ 35(2):106–145 Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867e880 Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones JD (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312:436–439 Navarro L, Jay F, Nomura K, He SY, Voinnet O (2008) Suppression of the microRNA pathway by bacterial effector proteins. Science 321(5891):964–796. https://doi.org/10.1126/science.1159505 Perrot-Rechenmann C (2010) Cellular responses to auxin: division versus expansion. Cold Spring Harb Perspect Biol 2(5):a001446. https://doi.org/10.1101/cshperspect.a001446 Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):e45. https://doi.org/10.1093/nar/29.9.e45 Planchamp C, Glauser G, Mauch-Mani B (2015) Root inoculation with Pseudomonas putida KT2440 induces transcriptional and metabolic changes and systemic resistance in maize plants. Front Plant Sci 5:719. https://doi.org/10.3389/fpls.2014.00719 Quesada MA, Tigier HA, Bukovac MJ, Valpuesta V (1990) Purification of an anionic isoperoxidase from peach seeds and its immunological comparison with other anionic isoperoxidases. Physiol Plant 79:623e628 Ren XM, Guo SJ, Tian W, Chen Y, Han H, Chen E, Li BL, Li YY, Chen ZJ (2019) Effects of plant growth-promoting bacteria (PGPB) inoculation on the growth, antioxidant activity, Cu uptake, and bacterial community structure of rape (Brassica napus L.) grown in Cu-contaminated agricultural soil. Front Microbiol 10:1455. https://doi.org/10.3389/fmicb.2019.01455 Rhoades M, Reinhart B, Lim L, Burge C, Bartel B, Bartel D (2002) Prediction of plant microRNA targets. Cell 110:513–520 Rodriguez AA, Grunberg KA, Taleisnik EL (2002) Reactive oxygen species in the elongation zone of maize leaves are necessary for leaf extension. Plant Physiol 129:1627–1632. https://doi.org/10.1104/pp.001222 Rodriguez RE, Mecchia MA, Debernardi JM, Schommer C, Weigel D, Palatnik JF (2010) Control of cell proliferation in Arabidopsis thaliana by microRNA miR396. Development 137(1):103–112. https://doi.org/10.1242/dev.043067 Rymen B, Fiorani F, Kartal F, Vandepoele K, Inze D, GTS B (2007) Cold nights impair leaf growth and cell cycle progression in maize through transcriptional changes of cell cycle genes. Plant Physiol 143(3):1429–1438 Saleem M, Asghar HN, Zahir ZA, Shahid M (2018) Impact of lead tolerant plant growth promoting rhizobacteria on growth, physiology, antioxidant activities, yield and lead content in sunflower in lead contaminated soil. Chemosphere 195:606–614 Sandhya V, Ali SZ, Grover M, Reddy G, Venkateswarlu B (2010) Effect of plant growth promoting Pseudomonas spp. on compatible solutes, antioxidant status and plant growth of maize under drought stress. Plant Growth Regul 62:21–30. https://doi.org/10.1007/s10725-010-9479-4 Schmidt R, Schippers JHM (2015) ROS-mediated redox signaling during cell differentiation in plants. Biochim Biophys Acta 1850:1497–1508. https://doi.org/10.1016/j.bbagen.2014.12.020 Schmidt R, Kunkowska AB, Schippers JHM (2016) Role of reactive oxygen species during cell expansion in leaves. Plant Physiol 172:2098–2106. https://doi.org/10.1104/pp.16.00426 Schommer C, Debernardi JM, Bresso EG, Rodriguez RE, Palatnik JF (2014) Repression of cell proliferation by miR319-regulated TCP4. Mol Plant 7(10):1533–1544. https://doi.org/10.1093/mp/ssu084 Schopfer P (1996) Hydrogen peroxide-mediated cell-wall stiffening in vitro in maize coleoptiles. Planta 199:43–49. https://doi.org/10.1007/BF00196879 Scofield S, Jones A, Murray JAH (2014) The plant cell cycle in context. J Exp Bot 65(10):2557–2562. https://doi.org/10.1093/jxb/eru188 Shriram V, Kumar V, Devarumath RM, Khare TS, Wani SH (2016) MicroRNAs as potential targets for abiotic stress tolerance in plants. Front Plant Sci 7:817. https://doi.org/10.3389/fpls.2016.00817 Song Z, Zhang L, Wang Y, Li H, Li S, Zhao H, Zhang H (2018) Constitutive expression of miR408 improves biomass and seed yield in Arabidopsis. Front Plant Sci 8:2114. https://doi.org/10.3389/fpls.2017.02114 Srivastava S, Chaudhry V, Mishra A, Chauhan PS, Rehman A, Yadav A, Tuteja N, Nautiyal CS (2012) Gene expression profiling through microarray analysis in Arabidopsis thaliana colonized by Pseudomonas putida MTCC5279, a plant growth promoting rhizobacterium. Plant Signal Behav 7:235–245 Staswick PE, Serban B, Rowe M, Tiryaki I, Maldonado MT, Maldonado MC, Suza W (2005) Characterization of an Arabidopsis enzyme family hat conjugates amino acids to indole-3-acetic acid. Plant Cell 17(2):616–627. https://doi.org/10.1105/tpc.104.026690 Sun G (2012) MicroRNAs and their diverse functions in plants. Plant Mol Biol 18:17–36. https://doi.org/10.1007/s11103-011-9817-6 Timmusk S, Wagner EG (1999) The plant-growth-promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: a possible connection between biotic and abiotic stress responses. Mol Plant-Microbe Interact 12:951–959 Tiryakioglu M, Eker S, Ozkutlu F, Hustedd S, Cakmak I (2006) Antioxidant defense system and cadmium uptake in barley genotypes differing in cadmium tolerance. J Trace Elem Med Biol 20(3):181–189. https://doi.org/10.1016/j.jtemb.2005.12.004 Tiwari S, Prasad V, Chauhan PS, Lata C (2017) Bacillus amyloliquefaciens confers tolerance to various abiotic stresses and modulates plant response to phytohormones through osmoprotection and gene expression regulation in rice. Front Plant Sci 8:1510. https://doi.org/10.3389/fpls.2017.01510 Tsukagoshi H, Busch W, Benfey PN (2010) Transcriptional regulation of ROS controls transition from proliferation to differentiation in the root. Cell 143(4):606–616. https://doi.org/10.1016/j.cell.2010.10.020 Upadhyay SK, Singh JS, Saxena AK, Singh DP (2011) Impact of PGPR inoculation on growth and antioxidant status of wheat under saline conditions. Plant Biol (Stuttg) 14(4):605–611. https://doi.org/10.1111/j.1438-8677.2011.00533.x Vacheron J, Desbrosses G, Bouffaud ML, Touraine B, Moenne-Loccoz Y, Muller D, Legendre L, Wisniewski-Dye F, Prigent-Combaret C (2013) Plant growth promoting rhizobacteria and root system functioning. Front Plant Sci 4:356 Varkonyi-Gasic E, Wu R, Wood M, Walton EF, Hellens RP (2007) Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs. Plant Methods 3:12. https://doi.org/10.1186/1746-4811-3-12 Verbon EH, Liberman LM (2016) Beneficial microbes affect endogenous mechanisms controlling root development. Trends Plant Sci 21(3):218–229. https://doi.org/10.1016/j.tplants.2016.01.013 Vives-Peris V, Gómez-Cadenas A, Pérez-Clemente RM (2018) Salt stress alleviation in citrus plants by plant growth-promoting rhizobacteria Pseudomonas putida and Novosphingobium sp. Plant Cell Rep 37:1557–1569. https://doi.org/10.1007/s00299-018-2328-z Wei Y, Shen CH, Lin Y, Chen PJ, Xu X (2014) Growth promotion-related miRNAs in Oncidium orchid roots colonized by the endophytic fungus Piriformospora indica. PLoS One 9(1):e84920. https://doi.org/10.1371/journal.pone.0084920 Willekens H, Inze D, Vanmontagu M, Van Camp W (1995) Catalases in plants. Mol Breed 1:207–228 Wu X, Monchy S, Taghavi S, Zhu W, Ramos J, van der Lelie D (2011) Comparative genomics and functional analysis of niche-specific adaptation in Pseudomonas putida. FEMS Microbiol Rev 35(2):299–323. https://doi.org/10.1111/j.1574-6976.2010.00249.x Xu MY, Zhang L, Li WW, Hu XL, Wang MB, Fan YL, Zhang CY, Wang L (2014) Stress-induced early flowering is mediated by miR169 in Arabidopsis thaliana. J Exp Bot 65:89–101. https://doi.org/10.1093/jxb/ert353 Yang WC, de Blank C, Meskiene I, Hirt H, Bakker J, van Kammen A, Franssen H, Bisseling T (1994) Rhizobium nod factors reactivate the cell cycle during infection and nodule primordium formation, but the cycle is only completed in primordium formation. Plant Cell 6(10):1415–1426. https://doi.org/10.1105/tpc.6.10.1415 Yang J, Kloepper JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4 Yang T, Wang Y, Teotia S, Wang Z, Shi C, Sun H, Gu Y, Zhang Z, Tang G (2019) The interaction between miR160 and miR165/166 in the control of leaf development and drought tolerance in Arabidopsis. Sci Rep 9:2832. https://doi.org/10.1038/s41598-019-39397-7 Zamioudis C, Mastranesti P, Dhonukshe P, Blilou I, Pieterse CMJ (2013) Unraveling root developmental programs initiated by beneficial Pseudomonas spp. bacteria. Plant Physiol 162(1):304–318. https://doi.org/10.1104/pp.112.212597 Zhang H, Li L (2013) SQUAMOSA promoter binding protein-like7 regulated microRNA408 is required for vegetative development in a rabidopsis. Plant J 74:98–109. https://doi.org/10.1111/tpj.12107 Zhang Y, Zhu X, Chen X, Song C, Zou Z, Wang Y, Wang M, Fang W, Li X (2014) Identification and characterization of cold-responsive microRNAs in tea plant (Camellia sinensis) and their targets using high-throughput sequencing and degradome analysis. BMC Plant Biol 14:271. https://doi.org/10.1186/s12870-014-0271-x Zhang JP, Yu Y, Feng YZ, Zhou YF, Zhang F, Yang YW, Lei MQ, Zhang YC, Chen YQ (2017a) MiR408 regulates grain yield and photosynthesis via a phytocyanin protein. Plant Physiol 175(3):1175–1185. https://doi.org/10.1104/pp.17.01169 Zhang M, Hu X, Zhu M, Xu M, Wang L (2017b) Transcription factors NF-YA2 and NF-YA10 regulate leaf growth via auxin signaling in Arabidopsis. Sci Rep 7:1395. https://doi.org/10.1038/s41598-017-01475-z