Innovative experimental reduced scale model of road tunnel equipped with realistic longitudinal ventilation system

Tunnelling and Underground Space Technology - Tập 52 - Trang 85-98 - 2016
Furio Cascetta1, Marilena Musto2, Giuseppe Rotondo2
1DIII, Seconda Università degli Studi di Napoli, Via Roma, 81031 Aversa, CE, Italy
2DII, Università di Napoli FEDERICO II, Piazzale Tecchio 80, 80125 Napoli, Italy

Tóm tắt

Từ khóa


Tài liệu tham khảo

Atkinson, 1997, Smoke control in sloping tunnels, Fire Saf. J., 27, 335, 10.1016/S0379-7112(96)00061-6

Betta, 2009, Numerical study of the optimization of the pitch angle of an alternative jet fan in a longitudinal tunnel ventilation system, Tunn. Undergr. Space Technol., 24, 164, 10.1016/j.tust.2008.06.002

Betta, 2010, Fluid dynamic performances of traditional and alternative jet fans in tunnel longitudinal ventilation systems, Tunn. Undergr. Space Technol., 25, 415, 10.1016/j.tust.2010.02.006

Blanchard, 2012, Experimental and numerical study of fire in a midscale test tunnel, Fire Saf. J., 47, 18, 10.1016/j.firesaf.2011.09.009

Caliendo, 2013, Simulation of fire scenarios due to different vehicle types with and without traffic in a bi-directional road tunnel, Tunn. Undergr. Space Technol., 37, 22, 10.1016/j.tust.2013.03.004

Chen, 2015, Thermal buoyant smoke back-layering flow length in a longitudinal ventilated tunnel with ceiling extraction at difference distance from heat source, Appl. Therm. Eng., 78, 129, 10.1016/j.applthermaleng.2014.12.034

Fluent, User’s Guide, 2005. Fluent Inc.

Hu, 2006, On the maximum smoke temperature under the ceiling in tunnel fires, Tunn. Undergr. Space Technol., 21, 650, 10.1016/j.tust.2005.10.003

Hu, 2013, An experimental investigation and correlation on buoyant gas temperature below ceiling in a slopping tunnel fire, Appl. Therm. Energy, 51, 246, 10.1016/j.applthermaleng.2012.07.043

Hu, 2013, A non-dimensional global correlation of maximum gas temperature beneath ceiling with different blockage–fire distance in a longitudinal ventilated tunnel, Appl. Therm. Energy, 56, 77, 10.1016/j.applthermaleng.2013.03.021

Ingason, Haukur, (2011). State of the art of tunnel fire research. In: Maevski, Igor Y. (Ed.), Design Fires in Road Tunnels, Transportation Research Board, ISBN: 0309143306, 978030914330.1.

Ingason, 2010, Model scale tunnel fire tests with longitudinal ventilation, Fire Saf. J., 45, 371, 10.1016/j.firesaf.2010.07.004

Ingason, 2015, Runehammar tunnel fire tests, Fire Saf. J., 71, 134, 10.1016/j.firesaf.2014.11.015

Ingason, 2015, Large scale tunnel fire tests with large droplet water-based fixed fire fighting system, Fire Technol., 1

Ji, 2015, Experimental study of non-monotonous sidewall effect on flame characteristics and burning rate of n-heptane pool fires, Fuel, 145, 228, 10.1016/j.fuel.2014.12.085

Li, 2013, Model scale tunnel fire tests with automatic sprinkler, Fire Saf. J., 61, 298, 10.1016/j.firesaf.2013.09.024

Li, 2014, Position of maximum ceiling temperature in a tunnel fire, Fire Technol., 50, 889, 10.1007/s10694-012-0309-2

McCaffrey, 1977, Buoyancy driven countercurrent flows generated by a fire source, 457

Meng, 2014, Numerical study on the optimization of smoke ventilation mode at the conjunction area between tunnel track and platform in emergency of a train fire at subway station, Tunn. Undergr. Space Technol., 40, 151, 10.1016/j.tust.2013.09.014

Musto, 2015, CFD analysis of a realistic reduced-scale modeling equipped with axial jet fan, Fire Saf. J., 74, 11, 10.1016/j.firesaf.2015.03.006

Nyman, 2012, Temperature stratification in tunnel, Fire Saf. J., 45, 30, 10.1016/j.firesaf.2011.11.002

Oka, 1995, Control of smoke flow in tunnel fires, Fire Saf. J., 25, 305, 10.1016/0379-7112(96)00007-0

Roh, 2008, An experimental study on the effect of ventilation velocity on burning rate in tunnel fires—heptane pool fire case, Build. Environ., 143, 1225, 10.1016/j.buildenv.2007.03.007

Shih, 1995, A new k–ε eddy viscosity model for high Reynolds number turbulent flows, Comput. Fluids, 24, 227, 10.1016/0045-7930(94)00032-T

Tang, 2014, Longitudinal distributions of CO concentration and temperature in buoyant tunnel fire smoke flow in a reduced pressure atmosphere with lower air entrainment at high altitude, Int. J. Heat Mass Transfer, 75, 130, 10.1016/j.ijheatmasstransfer.2014.03.058

Thomas, P.H., 1968. The movement of smoke in horizontal passage against an air flow, Fire Research Station Note No. 723, Fire Research Station, UK, September 1968.

Vauquelin, 2005, Definition and experimental evaluation of the smoke “confinement velocity” in tunnel fires, Fire Saf. J., 40, 320, 10.1016/j.firesaf.2005.02.004

Wu, 2000, Control of smoke flow in tunnel fires using longitudinal ventilation system – a study of the critical velocity, Fire Saf. J., 35, 363, 10.1016/S0379-7112(00)00031-X