Inner Amenability of Some Groups of Piecewise-Linear Homeomorphisms of the Real Line

Journal of Mathematical Sciences - Tập 106 - Trang 3164-3167 - 2001
Tullio G. Ceccherini-Silberstein, Fabio Scarabotti

Tài liệu tham khảo

E. Bédos, “On actions of amenable groups on II1-factors, ” J. Funct. Anal., 91, 404-414 (1990). E. Bédos andP. de la Harpe, “Moyennabilité interieure des groupes: définitions et examples, ” L'Enseign. Math., 32, 139-157 (1986). M. G. Brin andC. C. Squier, “Groups of piecewise linear homeomorphisms of the real line, ” Invent. Math., 79, 485-498 (1985). T. G. Ceccherini-Silberstein, “Around amenability” (this volume). J. F. Cannon,W. J. Floyd, andW. R. Parry, “Introductory notes on Richard Thompson's groups, ” L'Enseign. Math., 42, 215-256 (1986). T. Ceccherini-Silberstein, R. I. Grigorchuk, and P. de la Harpe, “Amenability and paradoxical decompositions for pseudogroups and for discrete metric spaces, ” Tr. Steklov Mat. Inst. Rossiisk. Akad. Nauk (to appear). E. G. E.ros, “Property à and inner amenability, ” Proc. Amer. Math. Soc., 47, 483-486 (1975). P. Jolissaint, “Moyennabilité interieure du groupe F de Thompson, ” C. R. Acad. Sci. Paris, Série I, 325, 61-64 (1997). P. Jolissaint, “Central sequences in the factor associated with Thompson's group F, ” Ann. Inst. Fourier (Grenoble) (to appear). J. von Neumann, “Zur allgemeinen Theorie des Masses, ” Fund. Math., 13, 73-116 (1929). S. Wagon, The Banach-Tarski Paradox, Cambridge Univ. Press, Cambridge (1985).