Injection-molded natural fiber-reinforced polymer composites–a review
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abdelwahab, M. A., Rodriguez-Uribe, A., Misra, M., Mohanty, K., & A. (2019). Injection molded novel biocomposites from polypropylene and sustainable biocarbon. Molecules, 24(22), 4026. https://doi.org/10.3390/molecules24224026.
Abu-Sharkh, B. F., & Hamid, H. (2004). Degradation study of date palm fibre/polypropylene composites in natural and artificial weathering: mechanical and thermal analysis. Polym Degrad Stab, 85(3), 967–973. https://doi.org/10.1016/j.polymdegradstab.2003.10.022.
Adeniyi, A. G., Onifade, D. V., Ighalo, J. O., & Adeoye, A. S. (2019). A review of coir fiber reinforced polymer composites. Compos Part B Eng, 176, 107305. https://doi.org/10.1016/j.compositesb.2019.107305.
Agüero, Á., Lascano, D., Garcia-Sanoguera, D., Fenollar, O., & Torres-Giner, S. (2020). Valorization of linen processing by-products for the development of injection-molded green composite pieces of polylactide with improved performance. Sustainability, 12(2), 652. https://doi.org/10.3390/su12020652.
Aliotta, L., Gigante, V., Coltelli, M. B., Cinelli, P., Lazzeri, A., & Seggiani, M. (2019). Thermo-mechanical properties of PLA/short flax fiber biocomposites. Appl Sci, 9(18), 3797. https://doi.org/10.3390/app9183797.
Alvarez, V., Vazquez, A., & Bernal, C. (2006). Effect of microstructure on the tensile and fracture properties of sisal fiber/starch-based composites. J Compos Mater, 40(1), 21–35. https://doi.org/10.1177/0021998305053508.
Alvarez, V. A., Terenzi, A., Kenny, J. M., & Vazquez, A. (2004). Melt rheological behavior of starch-based matrix composites reinforced with short sisal fibers. Polymer Eng Sci, 44(10), 1907–1914. https://doi.org/10.1002/pen.20193.
Anal, I. & Verma, D. (2017).Construction materials reinforced with natural products, Springer International Publishing.Handbook of Ecomaterials, 1-24.
Anbupalani, M. S., Venkatachalam, C. D., & Rathanasamy, R. (2020). Influence of coupling agent on altering the reinforcing efficiency of natural fibre-incorporated polymers–a review. J Reinforced Plastics Composites, 39(13-14), 520–544. https://doi.org/10.1177/0731684420918937.
Andrzejewski, J., Szostak, M., Barczewski, M., & Łuczak, P. (2019). Cork-wood hybrid filler system for polypropylene and poly(lactic acid) based injection molded composites. Structure evaluation and mechanical performance. Compos Part B Eng, 163, 655–668. https://doi.org/10.1016/j.compositesb.2018.12.109.
Ansari, F., Granda, L. A., Joffe, R., Berglund, L. A., & Vilaseca, F. (2017). Experimental evaluation of anisotropy in injection molded polypropylene/wood fiber biocomposites. Compos A: Appl Sci Manuf, 96, 147–154. https://doi.org/10.1016/j.compositesa.2017.02.003.
Arao, Y., Fujiura, T., Itani, S., & Tanaka, T. (2015). Strength improvement in injection-molded jute-fiber-reinforced polylactide green-composites. Compos Part B Eng, 68, 200–206. https://doi.org/10.1016/j.compositesb.2014.08.032.
Arbelaiz, A., Fernández, B., Cantero, G., Llano-Ponte, R., Valea, A., & Mondragon, I. (2005). Mechanical properties of flax fibre/polypropylene composites. Influence of fibre/matrix modification and glass fibre hybridization. Compos A: Appl Sci Manuf, 36(12), 1637–1644. https://doi.org/10.1016/j.compositesa.2005.03.021.
Arbelaiz, A., Fernandez, B., Ramos, J. A., & Mondragon, I. (2006). Thermal and crystallization studies of short flax fibre reinforced polypropylene matrix composites: effect of treatments. Thermochimica Acta, 440(2), 111–121. https://doi.org/10.1016/j.tca.2005.10.016.
Aridi, N. A. M., Sapuan, S. M., Zainudin, E. S., & Al-Oqla, F. M. (2016). Mechanical and morphological properties of injection-molded rice husk polypropylene composites. Int J Polymer Anal Charac, 21(4), 305–313. https://doi.org/10.1080/1023666X.2016.1148316.
Arrakhiz, F. Z., Malha, M., Bouhfid, R., Benmoussa, K., & Qaiss, A. (2013). Tensile, flexural and torsional properties of chemically treated alfa, coir and bagasse reinforced polypropylene. Compos Part B Eng, 47, 35–41. https://doi.org/10.1016/j.compositesb.2012.10.046.
Assarar, M., Scida, D., Zouari, W., Saidane, E. H., & Ayad, R. (2016). Acoustic emission characterization of damage in short hemp-fiber-reinforced polypropylene composites. Polym Compos, 37(4), 1101–1112. https://doi.org/10.1002/pc.23272.
T. Aurich, T. Lampke, G. Mennig, and B. Wielage, Werk- SbffeinderFertigung, 36, 12 (1998).
Aurich, T., & Mennig, G. (2001). Flow-induced fiber orientation in injection molded fit fiber reinforced polypropylene. Polym Compos, 22(5), 680–689. https://doi.org/10.1002/pc.10570.
Bakis, C. E., Bank, L. C., Brown, V., Cosenza, E., Davalos, J. F., Lesko, J. J., … Triantafillou, T. C. (2002). Fiber-reinforced polymer composites for construction—state-of-the-art review. J Compos Construction, 6(2), 73–87. https://doi.org/10.1061/(ASCE)1090-0268(2002)6:2(73).
Balasubramanian, K., Sultan, M. T., & Rajeswari, N. (2018). Manufacturing techniques of composites for aerospace applications. In Sustainable Composites for Aerospace Applications (pp. 55-67). Cambridge: Woodhead Publishing.
Baran, I., Cinar, K., Ersoy, N., Akkerman, R., & Hattel, J. H. (2017). A review on the mechanical modeling of composite manufacturing processes. Arch Comput Methods Eng, 24(2), 365–395. https://doi.org/10.1007/s11831-016-9167-2.
Bax, B., & Müssig, J. (2008). Impact and tensile properties of PLA/Cordenka and PLA/flax composites. Compos Sci Technol, 68(7-8), 1601–1607. https://doi.org/10.1016/j.compscitech.2008.01.004.
Beckermann, G. W., & Pickering, K. L. (2008). Engineering and evaluation of hemp fibre reinforced polypropylene composites: fibre treatment and matrix modification. Compos A: Appl Sci Manuf, 39(6), 979–988. https://doi.org/10.1016/j.compositesa.2008.03.010.
Beg, M. D. H., & Pickering, K. L. (2006). Fiber pretreatment and its effects on wood fiber reinforced polypropylene composites. Mat Manufac Proc, 21(3), 303–307. https://doi.org/10.1080/10426910500464750.
Biagiotti, J., Puglia, D., Torre, L., Kenny, J. M., Arbelaiz, A., Cantero, G., … Mondragon, I. (2004). A systematic investigation on the influence of the chemical treatment of natural fibers on the properties of their polymer matrix composites. Polym Compos, 25(5), 470–479. https://doi.org/10.1002/pc.20040.
Birat, K. C., Panthapulakkal, S., Kronka, A., Agnelli, J. A. M., Tjong, J., & Sain, M. (2015). Hybrid biocomposites with enhanced thermal and mechanical properties for structural applications. J Appl Polym Sci, 132(34). https://doi.org/10.1002/app.42452.
Black, S. (2017). Looking to lighten up aircraft interiors-with natural fibers?
Bledzki, A. K., & Faruk, O. (2006). Injection moulded microcellular wood fibre–polypropylene composites. Compos A: Appl Sci Manuf, 37(9), 1358–1367. https://doi.org/10.1016/j.compositesa.2005.08.010.
Bledzki, A. K., & Gassan, J. (1999). Composites reinforced with cellulose based fibres. Prog Polym Sci, 24(2), 221–274. https://doi.org/10.1016/S0079-6700(98)00018-5.
Bledzki, A. K., Jaszkiewicz, A., & Scherzer, D. (2009). Mechanical properties of PLA composites with man-made cellulose and abaca fibres. Compos A: Appl Sci Manuf, 40(4), 404–412. https://doi.org/10.1016/j.compositesa.2009.01.002.
Bledzki, A. K., Mamun, A. A., Jaszkiewicz, A., & Erdmann, K. (2010). Polypropylene composites with enzyme modified abaca fibre. Compos Sci Technol, 70(5), 854–860. https://doi.org/10.1016/j.compscitech.2010.02.003.
Bledzki, A. K., Mamun, A. A., Lucka-Gabor, M., & Gutowski, V. S. (2008). The effects of acetylation on properties of flax fibre and its polypropylene composites. Express Polymer Letters, 2(6), 413–422. https://doi.org/10.3144/expresspolymlett.2008.50.
Boegler, O., Kling, U., Empl, D., & Isikveren, A. T. (2015). Potential of sustainable materials in wing structural design (pp. 16-18). Bonn: Deutsche Gesellschaft fürLuft-und Raumfahrt-Lilienthal-Oberth eV.
Bos, H. L., Müssig, J., & van den Oever, M. J. (2006). Mechanical properties of short-flax-fibre reinforced compounds. Compos A: Appl Sci Manuf, 37(10), 1591–1604. https://doi.org/10.1016/j.compositesa.2005.10.011.
Bouafif, H., Koubaa, A., Perré, P., & Cloutier, A. (2009). Effects of fiber characteristics on the physical and mechanical properties of wood plastic composites. Compos A: Appl Sci Manuf, 40(12), 1975–1981.
Cabral, H., Cisneros, M., Kenny, J. M., Vazquez, A., & Bernal, C. R. (2005). Structure–properties relationship of short jute fiber-reinforced polypropylene composites. JCompos Materials, 39(1), 51–65. https://doi.org/10.1177/0021998305046434.
Cantero, G., Arbelaiz, A., Llano-Ponte, R., & Mondragon, I. (2003). Effects of fibre treatment on wettability and mechanical behaviour of flax/polypropylene composites. Compos Sci Technol, 63(9), 1247–1254. https://doi.org/10.1016/S0266-3538(03)00094-0.
Chaitanya, S., & Singh, I. (2017). Processing of PLA/sisal fiber biocomposites using direct-and extrusion-injection molding. Mat Manufac Proc, 32(5), 468–474. https://doi.org/10.1080/10426914.2016.1198034.
Chaitanya, S., Singh, I., & Song, J. I. (2019). Recyclability analysis of PLA/sisal fiber biocomposites. Compos Part B Eng, 173, 106895. https://doi.org/10.1016/j.compositesb.2019.05.106.
Chandramohan, D., & Marimuthu, K. (2011). Tensile and hardness tests on natural fiber reinforced polymer composite material. Int J Adv Eng Sci Technol, 6(1), 97–104.
Chiu, C. P., Shih, L. C., & Wei, J. H. (1991). Dynamic modeling of the mold filling process in an injection molding machine. Polymer Eng Sci, 31(19), 1417–1425. https://doi.org/10.1002/pen.760311908.
Chow, C. P. L., Xing, X. S., & Li, R. K. Y. (2007). Moisture absorption studies of sisal fibre reinforced polypropylene composites. Compos Sci Technol, 67(2), 306–313. https://doi.org/10.1016/j.compscitech.2006.08.005.
Chung, T. J., Park, J. W., Lee, H. J., Kwon, H. J., Kim, H. J., Lee, Y. K., & Tai Yin Tze, W. (2018). The improvement of mechanical properties, thermal stability, and water absorption resistance of an eco-friendly PLA/kenaf biocomposite using acetylation. Appl Sci, 8(3), 376. https://doi.org/10.3390/app8030376.
da Silva Moura, A., Demori, R., Leão, R. M., Frankenberg, C. L. C., & Santana, R. M. C. (2019). The influence of the coconut fiber treated as reinforcement in PHB (polyhydroxybutyrate) composites. Mat Today Commun, 18, 191–198. https://doi.org/10.1016/j.mtcomm.2018.12.006.
Dasore, A., Rajak, U., Balijepalli, R., Verma, T. N., & Ramakrishna, K. (2021). An overview of refinements, processing methods and properties of natural fiber composites. Materials Today: Proceedings.
Dinerman, A., & Steffens, N. L. (1991). U.S. Patent No. 5,035,605. Washington, DC: U.S. Patent and Trademark Office.
Elkington, M., Bloom, D., Ward, C., Chatzimichali, A., & Potter, K. (2015). Hand layup: understanding the manual process. Adv Manufac Polymer Compos Sci, 1(3), 138–151.
Eloy, F. S., Costa, R. R. C., De Medeiros, R., Ribeiro, M. L., & Tita, V. (2015). Comparison between mechanical properties of bio and synthetic composites for use in aircraft interior structures. In Meeting on Aeronautical Composite Materials and Structures. São Carlos: University of São Paulo.
Espinach, F. X., Granda, L. A., Tarrés, Q., Duran, J., Fullana-i-Palmer, P., & Mutjé, P. (2017). Mechanical and micromechanical tensile strength of eucalyptus bleached fibers reinforced polyoxymethylene composites. Compos Part B Eng, 116, 333–339. https://doi.org/10.1016/j.compositesb.2016.10.073.
Fajardo Cabrera de Lima, L. D. P., Santana, R. M. C., & Chamorro Rodríguez, C. D. (2020). Influence of coupling agent in mechanical, physical and thermal properties of polypropylene/bamboo fiber composites: under natural outdoor aging. Polymers, 12(4), 929. https://doi.org/10.3390/polym12040929.
Fara, S., & Pavan, A. (2004). Fibre orientation effects on the fracture of short fibre polymer composites: on the existence of a critical fibre orientation on varying internal material variables. J Mater Sci, 39(11), 3619–3628. https://doi.org/10.1023/B:JMSC.0000030714.13161.f6.
Fernandes, C., Pontes, A. J., Viana, J. C., & Gaspar-Cunha, A. (2018). Modeling and optimization of the injection-molding process: a review. Adv Polymer Technol, 37(2), 429–449. https://doi.org/10.1002/adv.21683.
Fiore, V., Di Bella, G., & Valenza, A. (2015). The effect of alkaline treatment on mechanical properties of kenaf fibers and their epoxy composites. Compos Part B Eng, 68, 14–21. https://doi.org/10.1016/j.compositesb.2014.08.025.
Fung, K. L., Li, R. K. Y., & Tjong, S. C. (2002). Interface modification on the properties of sisal fiber-reinforced polypropylene composites. J Appl Polym Sci, 85(1), 169–176. https://doi.org/10.1002/app.10584.
Fung, K. L., Xing, X. S., Li, R. K. Y., Tjong, S. C., & Mai, Y. W. (2003). An investigation on the processing of sisal fibre reinforced polypropylene composites. Compos Sci Technol, 63(9), 1255–1258. https://doi.org/10.1016/S0266-3538(03)00095-2.
Galt, J., Kestle, M., &Yetter, J. (1998). U.S. Patent No. 5,707,667. Washington, DC: U.S.
Gao, S. L., & Mäder, E. (2006). Jute/polypropylene composites I. Effect of matrix modification. Compos Sci Technol, 66(7-8), 952–963.
Glaesener, P., &Kestle, M. R. (1997). U.S. Patent No. 5,620,723. Washington, DC: U.S.,1997.
González-López, M. E., Pérez-Fonseca, A. A., Manríquez-González, R., Arellano, M., Rodrigue, D., & Robledo-Ortíz, J. R. (2019). Effect of surface treatment on the physical and mechanical properties of injection molded poly (lactic acid)-coir fiber biocomposites. Polym Compos, 40(6), 2132–2141. https://doi.org/10.1002/pc.24997.
Gunturu, B., Vemulapalli, C., Malkapuram, R., & Konduru, N. (2020). Investigation on mechanical, thermal and water absorption properties of banana/coir reinforced polypropylene hybrid composites investigation on mechanical, thermal and water absorption properties of banana/coir reinforced polypropylene hybrid composites. Revue des Composites et des MatériauxAvancés, 30.
Guo, G., & Kethineni, C. (2020). Direct injection molding of hybrid polypropylene/wood-fiber composites reinforced with glass fiber and carbon fiber. Int J Adv Manufac Technol, 106(1), 201–209. https://doi.org/10.1007/s00170-019-04572-7.
Gupta, G., Kumar, A., Tyagi, R., & Kumar, S. (2016). Application and future of composite materials: a review. Int J Innov Res Sci Eng Technol, 5(5), 6907–6911.
Hao, X., Zhou, H., Mu, B., Chen, L., Guo, Q., Yi, X., … Ou, R. (2020). Effects of fiber geometry and orientation distribution on the anisotropy of mechanical properties, creep behavior, and thermal expansion of natural fiber/HDPE composites. Compos Part B Eng, 185, 107778. https://doi.org/10.1016/j.compositesb.2020.107778.
Hasan, K. F., Horváth, P. G., Bak, M., & Alpár, T. (2021). A state-of-the-art review on coir fiber-reinforced biocomposites. RSC Adv, 11(18), 10548–10571. https://doi.org/10.1039/D1RA00231G.
Hashemi, S. (2002). Influence of temperature on weldline strength of injection moulded short glass fibre styrene maleic anhydride polymer composites. Plastics Rubber Composites, 31(7), 318–324. https://doi.org/10.1179/146580102225005027.
Havlicsek, H., & Alleyne, A. (1999). Nonlinear control of an electrohydraulic injection molding machine via iterative adaptive learning. IEEE/ASME Trans Mechatronics, 4(3), 312–323. https://doi.org/10.1109/3516.789689.
Hepworth, D. G., Hobson, R. N., Bruce, D. M., & Farrent, J. W. (2000). The use of untreated hemp fibre in composite manufacture. Compos A: Appl Sci Manuf, 31(11), 1279–1283. https://doi.org/10.1016/S1359-835X(00)00098-1.
Hornsby, P. R., Hinrichsen, E., & Tarverdi, K. (1997). Preparation and properties of polypropylene composites reinforced with wheat and flax straw fibres: part I fibre characterization. J Mater Sci, 32(2), 443–449. https://doi.org/10.1023/A:1018521920738.
Huang, J. K., & Young, W. B. (2019). The mechanical, hygral, and interfacial strength of continuous bamboo fiber reinforced epoxy composites. Compos Part B Eng, 166, 272–283. https://doi.org/10.1016/j.compositesb.2018.12.013.
Ichazo, M. N., Albano, C., Gonzalez, J., Perera, R., & Candal, A. M. (2001). Polypropylene/wood flour composites: treatments and properties. Composite Structures, 54(2-3), 207–214. https://doi.org/10.1016/S0263-8223(01)00089-7.
Idumah, C. I., Ogbu, J. E., Ndem, J. U., & Obiana, V. (2019). Influence of chemical modification of kenaf fiber on xGNP-PP nano-biocomposites. SN Appl Sci, 1(10), 1–11. https://doi.org/10.1007/s42452-019-1319-1.
Ishak, Z. M., Yow, B. N., Ng, B. L., Khalil, H. A., & Rozman, H. D. (2001). Hygrothermal aging and tensile behavior of injection-molded rice husk-filled polypropylene composites. J Appl Polym Sci, 81(3), 742–753. https://doi.org/10.1002/app.1491.
Islam, M. N., Rahman, M. R., Haque, M. M., & Huque, M. M. (2010). Physico-mechanical properties of chemically treated coir reinforced polypropylene composites. Compos A: Appl Sci Manuf, 41(2), 192–198. https://doi.org/10.1016/j.compositesa.2009.10.006.
Jaafar, J., Siregar, J. P., Tezara, C., Hamdan, M. H. M., & Rihayat, T. (2019). A review of important considerations in the compression molding process of short natural fiber composites. Int J Adv Manufac Technol, 105(7), 3437–3450. https://doi.org/10.1007/s00170-019-04466-8.
Jariwala, H., & Jain, P. (2019). A review on mechanical behavior of natural fiber reinforced polymer composites and its applications. J Reinforced Plastics Composites, 38(10), 441–453. https://doi.org/10.1177/0731684419828524.
Jayaraman, K. (2003). Manufacturing sisal–polypropylene composites with minimum fibre degradation. Compos Sci Technol, 63(3-4), 367–374. https://doi.org/10.1016/S0266-3538(02)00217-8.
Jayaraman, K., & Bhattacharyya, D. (2004). Mechanical performance of woodfibre–waste plastic composite materials. Resource Conserv Recycling, 41(4), 307–319. https://doi.org/10.1016/j.resconrec.2003.12.001.
Jeyapragash, R., Srinivasan, V., & Sathiyamurthy, S. J. (2020). Mechanical properties of natural fiber/particulate reinforced epoxy composites–A review of the literature. Mat Today Proc, 22, 1223–1227.
Jiang, L., Huang, J., Qian, J., Chen, F., Zhang, J., Wolcott, M. P., & Zhu, Y. (2008). Study of poly (3-hydroxybutyrate-co-3-hydroxyvalerate)(PHBV)/bamboo pulp fiber composites: effects of nucleation agent and compatibilizer. J Polym Environ, 16(2), 83–93. https://doi.org/10.1007/s10924-008-0086-7.
Jiang, N., Yu, T., & Li, Y. (2018). Effect of hydrothermal aging on injection molded short jute fiber reinforced poly (lactic acid)(PLA) composites. J Polym Environ, 26(8), 3176–3186. https://doi.org/10.1007/s10924-018-1205-8.
Joseph, K., Thomas, S., & Pavithran, C. (1996). Effect of chemical treatment on the tensile properties of short sisal fibre-reinforced polyethylene composites. Polymer, 37(23), 5139–5149. https://doi.org/10.1016/0032-3861(96)00144-9.
Joseph, P. V., Joseph, K., & Thomas, S. (1999). Effect of processing variables on the mechanical properties of sisal-fiber-reinforced polypropylene composites. Composit Sci Technol, 59(11), 1625–1640. https://doi.org/10.1016/S0266-3538(99)00024-X.
Junkasem, J., Menges, J., & Supaphol, P. (2006). Mechanical properties of injection-molded isotactic polypropylene/roselle fiber composites. J Appl Polym Sci, 101(5), 3291–3300. https://doi.org/10.1002/app.23829.
Jyoti, A., Singh, R. K., Kumar, N., Aman, A. K., & Kar, M. (2021). ‘Synthesis and properties of amorphous nanosilica from rice husk and its composites. Mat Sci Eng B, 263, 114871. https://doi.org/10.1016/j.mseb.2020.114871.
Kalaprasad, G., Joseph, K., & Thomas, S. (1997). Influence of short glass fiber addition on the mechanical properties of sisal reinforced low density polyethylene composites. J Compos Materials, 31(5), 509–527. https://doi.org/10.1177/002199839703100504.
Karl, W. (1964). U.S. Patent No. 3,156,014. Washington, DC: U.S.
Karnani, R., Krishnan, M., & Narayan, R. (1997). Biofiber-reinforced polypropylene composites. Polymer Eng Sci, 37(2), 476–483. https://doi.org/10.1002/pen.11691.
Kc, B., Faruk, O., Agnelli, J. A. M., Leao, A. L., Tjong, J., & Sain, M. (2016). Sisal-glass fiber hybrid biocomposite: optimization of injection molding parameters using Taguchi method for reducing shrinkage. Compos A: Appl Sci Manuf, 83, 152–159. https://doi.org/10.1016/j.compositesa.2015.10.034.
Keller, A. (2003). Compounding and mechanical properties of biodegradable hemp fibre composites. Compos Sci Technol, 63(9), 1307–1316. https://doi.org/10.1016/S0266-3538(03)00102-7.
Keya, K. N., Kona, N. A., Koly, F. A., Maraz, K. M., Islam, M. N., & Khan, R. A. (2019). Natural fiber reinforced polymer composites: history, types, advantages and applications. Mat Eng Res, 1(2), 69–85. https://doi.org/10.25082/MER.2019.02.006.
Koffi, A., Koffi, D., & Toubal, L. (2021). Mechanical properties and drop-weight impact performance of injection-molded HDPE/birch fiber composites. Polymer Testing, 93, 106956. https://doi.org/10.1016/j.polymertesting.2020.106956.
Koronis, G., Silva, A., & Fontul, M. (2013). Green composites: a review of adequate materials for automotive applications. Compos Part B Eng, 44(1), 120–127. https://doi.org/10.1016/j.compositesb.2012.07.004.
Kumar, A., & Tumu, V. R. (2019). Physicochemical properties of the electron beam irradiated bamboo powder and its bio-composites with PLA. Compos Part B Eng, 175, 107098. https://doi.org/10.1016/j.compositesb.2019.107098.
Kumar, B. B., Doddamani, M., Zeltmann, S. E., Gupta, N., Ramesh, M. R., & Ramakrishna, S. (2016). Processing of cenosphere/HDPE syntactic foams using an industrial scale polymer injection molding machine. Mat Design, 92, 414–423. https://doi.org/10.1016/j.matdes.2015.12.052.
Kumar, S., Zindani, D., & Bhowmik, S. (2020). Investigation of mechanical and viscoelastic properties of flax-and ramie-reinforced green composites for orthopedic implants. J Mat Eng Perform, 29, 3161–3171.
Kuo, J. L., & Chang, M. T. (2015). Multiobjective design of turbo injection mode for axial flux motor in plastic injection molding machine by particle swarm optimization. Math Probl Eng. https://doi.org/10.1155/2015/974624.
Kuo, P. Y., Wang, S. Y., Chen, J. H., Hsueh, H. C., & Tsai, M. J. (2009). Effects of material compositions on the mechanical properties of wood–plastic composites manufactured by injection molding. Mat Design, 30(9), 3489–3496. https://doi.org/10.1016/j.matdes.2009.03.012.
Kusić, D., Božič, U., Monzón, M., Paz, R., & Bordón, P. (2020). Thermal and mechanical characterization of banana fiber reinforced composites for its application in injection molding. Materials, 13(16), 3581. https://doi.org/10.3390/ma13163581.
Kwon, H. J., Sunthornvarabhas, J., Park, J. W., Lee, J. H., Kim, H. J., Piyachomkwan, K., … Cho, D. (2014). Tensile properties of kenaf fiber and corn husk flour reinforced poly (lactic acid) hybrid bio-composites: role of aspect ratio of natural fibers. Compos Part B Eng, 56, 232–237. https://doi.org/10.1016/j.compositesb.2013.08.003.
Laczko, F. (1975). U.S. Patent No. 3,893,792. Washington, DC: U.S..
Lau, K. T., Hung, P. Y., Zhu, M. H., & Hui, D. (2018). Properties of natural fibre composites for structural engineering applications. Compos Part B Eng, 136, 222–233. https://doi.org/10.1016/j.compositesb.2017.10.038.
Le Bourhis, E., & Touchard, F. (2021). Mechanical properties of natural fiber composites. In Reference Module in Materials Science and Materials Engineering.
Le Troedec, M., Sedan, D., Peyratout, C., Bonnet, J. P., Smith, A., Guinebretiere, R., … Krausz, P. (2008). Influence of various chemical treatments on the composition and structure of hemp fibres. Compos A: Appl Sci Manuf, 39(3), 514–522. https://doi.org/10.1016/j.compositesa.2007.12.001.
Li, X., Tabil, L. G., Panigrahi, S., & Crerar, W. J. (2006). The influence of fiber content on properties of injection molded flax fiber-HDPE biocomposites. In 2006 ASAE annual meeting (p. 1). American Society of Agricultural and Biological Engineers.
Li, Y., Mai, Y. W., & Ye, L. (2000). Sisal fibre and its composites: a review of recent developments. Compos Sci Technol, 60(11), 2037–2055. https://doi.org/10.1016/S0266-3538(00)00101-9.
Link, C., Osmokrovic, L., & Fan, Y. (2019). U.S. Patent Application No. 16/248,162.
Liu, Y., Xie, J., Wu, N., Wang, L., Ma, Y., & Tong, J. (2019). Influence of silane treatment on the mechanical, tribological and morphological properties of corn stalk fiber reinforced polymer composites. Tribol Inter, 131, 398–405. https://doi.org/10.1016/j.triboint.2018.11.004.
Long, H., Wu, Z., Dong, Q., Shen, Y., Zhou, W., Luo, Y., … Dong, X. (2019). Mechanical and thermal properties of bamboo fiber reinforced polypropylene/polylactic acid composites for 3D printing. Polymer Eng Sci, 59(s2), E247–E260. https://doi.org/10.1002/pen.25043.
Madan, J., Mani, M., Lee, J. H., & Lyons, K. W. (2015). Energy performance evaluation and improvement of unit-manufacturing processes: injection molding case study. J Clean Prod, 105, 157–170. https://doi.org/10.1016/j.jclepro.2014.09.060.
Mai Nguyen Tran, T., Mn, P., Lee, D. W., Cabo, M. J., & Song, J. I. (2020). Polypropylene/abaca fiber eco-composites: influence of bio-waste additive on flame retardancy and mechanical properties. Polymer Composites.
Mansor, M. R., Nurfaizey, A. H., Tamaldin, N., & Nordin, M. N. A. (2019). Natural fiber polymer composites: utilization in aerospace engineering. In Biomass, Biopolymer-Based Materials, and Bioenergy (pp. 203-224). Cambridge: Woodhead Publishing.
Matsuda, K., Inaba, N., Kaminishi, M., Funabashi, T., & Tanaka, N. (1990). U.S. Patent No. 4,932,854. Washington, DC: U.S. Patent and Trademark Office.
Mianehrow, H., & Abbasian, A. (2017). Energy monitoring of plastic injection molding process running with hydraulic injection molding machines. J Clean Prod, 148, 804–810. https://doi.org/10.1016/j.jclepro.2017.02.053.
Migneault, S., Koubaa, A., Erchiqui, F., Chaala, A., Englund, K., & Wolcott, M. P. (2009). Effects of processing method and fiber size on the structure and properties of wood–plastic composites. Compos A: Appl Sci Manuf, 40(1), 80–85. https://doi.org/10.1016/j.compositesa.2008.10.004.
Miklos, M. and Gregory, R. (2003). Common mistakes in long-fibre molding, plastics technology, 49: 1;ProQuest Science Journals, p. 40.
Mirbagheri, J., Tajvidi, M., Hermanson, J. C., & Ghasemi, I. (2007). Tensile properties of wood flour/kenaf fiber polypropylene hybrid composites. J Appl Polym Sci, 105(5), 3054–3059. https://doi.org/10.1002/app.26363.
Mohammed, A. A. S., Bachtiar, D., Siregar, J. P., Rejab, M. R. B. M., & Hasany, S. F. (2016). Physicochemical study of eco-friendly sugar palm fiber thermoplastic polyurethane composites. BioResources, 11(4), 9438–9454. https://doi.org/10.15376/biores.11.4.9438-9454.
Mohan, M., Ansari, M. N. M., & Shanks, R. A. (2017). Review on the effects of process parameters on strength, shrinkage, and warpage of injection molding plastic component. Polym-Plast Technol Eng, 56(1), 1–12. https://doi.org/10.1080/03602559.2015.1132466.
Mohanty, A. K., Tummala, P., Liu, W., Misra, M., Mulukutla, P. V., & Drzal, L. T. (2005). Injection molded biocomposites from soy protein based bioplastic and short industrial hemp fiber. J Polym Environ, 13(3), 279–285. https://doi.org/10.1007/s10924-005-4762-6.
Mohanty, A. K., Wibowo, A., Misra, M., & Drzal, L. T. (2004). Effect of process engineering on the performance of natural fiber reinforced cellulose acetate biocomposites. Compos A: Appl Sci Manuf, 35(3), 363–370. https://doi.org/10.1016/j.compositesa.2003.09.015.
Morris, R. H., Geraldi, N. R., Stafford, J. L., Spicer, A., Hall, J., Bradley, C., & Newton, M. I. (2020). Woven natural fibre reinforced composite materials for medical imaging. Materials, 13(7), 1684. https://doi.org/10.3390/ma13071684.
Nematollahi, M., Karevan, M., Fallah, M., & Farzin, M. (2020). Experimental and numerical study of the critical length of short kenaf fiber reinforced polypropylene composites. Fibers Polymers, 21(4), 821–828. https://doi.org/10.1007/s12221-020-9600-x.
Nematollahi, M., Karevan, M., Mosaddegh, P., & Farzin, M. (2019). Morphology, thermal and mechanical properties of extruded injection molded kenaf fiber reinforced polypropylene composites. Mat Res Express, 6(9), 095409. https://doi.org/10.1088/2053-1591/ab2fbd.
Nyström, B. (1999/2000). Karakterisering av kompositers förbränningsegenskaper, SICOMP TR 01-009. Proj Rep VAMP, 18, 1999–2002.
Ohba, Y., Sazawa, M., Ohishi, K., Asai, T., Majima, K., Yoshizawa, Y., & Kageyama, K. (2009). Sensorless force control for injection molding machine using reaction torque observer considering torsion phenomenon. IEEE Trans Indus Electron, 56(8), 2955–2960. https://doi.org/10.1109/TIE.2009.2024444.
Okubo, K., Fujii, T., & Thostenson, E. T. (2009). Multi-scale hybrid biocomposite: processing and mechanical characterization of bamboo fiber reinforced PLA with microfibrillated cellulose. Compos A: Appl Sci Manuf, 40(4), 469–475. https://doi.org/10.1016/j.compositesa.2009.01.012.
Orue, A., Jauregi, A., Unsuain, U., Labidi, J., Eceiza, A., & Arbelaiz, A. (2016). The effect of alkaline and silane treatments on mechanical properties and breakage of sisal fibers and poly (lactic acid)/sisal fiber composites. Compos A: Appl Sci Manuf, 84, 186–195. https://doi.org/10.1016/j.compositesa.2016.01.021.
Osoka, E., Onukwuli, O. D., & Kamalu, C. (2018). Mechanical properties of selected natural fiber reinforced composites for automobile application. Am J Eng Res, 7, 384–388.
Osswald, T., & Hernández-Ortiz, J. P. (2006). Polymer processing. Modeling and Simulation. Munich: Hanser, 1-651, DOI: https://doi.org/10.3139/9783446412866.
Pailoor, S., Murthy, H. N., Hadimani, P., & Sreenivasa, T. N. (2019). Effect of chopped/continuous fiber, coupling agent and fiber ratio on the mechanical properties of injection-molded jute/polypropylene composites. J Natural Fibers, 16(1), 126–136. https://doi.org/10.1080/15440478.2017.1410510.
Panaitescu, D. M., Vuluga, Z., Sanporean, C. G., Nicolae, C. A., Gabor, A. R., & Trusca, R. (2019). High flow polypropylene/SEBS composites reinforced with differently treated hemp fibers for injection molded parts. Compos Part B Eng, 174, 107062. https://doi.org/10.1016/j.compositesb.2019.107062.
Panthapulakkal, S., & Sain, M. (2007). Injection-molded short hemp fiber/glass fiber-reinforced polypropylene hybrid composites—mechanical, water absorption and thermal properties. J Appl Polym Sci, 103(4), 2432–2441. https://doi.org/10.1002/app.25486.
Phillips, S., & Lessard, L. (2012). Application of natural fiber composites to musical instrument top plates. J Compos Materials, 46(2), 145–154. https://doi.org/10.1177/0021998311410497.
Pilla, S., Gong, S., O’Neill, E., Rowell, R. M., & Krzysik, A. M. (2008). Polylactide-pine wood flour composites. Polymer Eng Sci, 48(3), 578–587. https://doi.org/10.1002/pen.20971.
Pilla, S., Gong, S., O’Neill, E., Yang, L., & Rowell, R. M. (2009b). Polylactide-recycled wood fiber composites. J Appl Polym Sci, 111(1), 37-47, 1, DOI: https://doi.org/10.1002/app.28860.
Pilla, S., Kramschuster, A., Lee, J., Auer, G. K., Gong, S., & Turng, L. S. (2009a). Microcellular and solid polylactide–flax fiber composites. Composite Interfaces, 16(7-9), 869–890. https://doi.org/10.1163/092764409X12477467990283.
Piotter, V., Hanemann, T., Ruprecht, R., & Hausselt, J. (1997). Injection molding and related techniques for fabrication of microstructures. Microsystem Technol, 3(3), 129–133. https://doi.org/10.1007/s005420050069.
Puglia, D., Biagiotti, J., & Kenny, J. M. (2004). A review on natural fibre-based composites—Part II: Application of natural reinforcements in composite materials for automotive industry. J Natural Fibres, 1(3).
Punyamurthy, R., Sampathkumar, D., Bennehalli, B., &Badyankal, P. V. (2014). Study of the effect of chemical treatments on the tensile behaviour of abaca fiber reinforced polypropylene composites. J Adv Chem, 10(6), 2803–2811.
Qaiss, A., & Bousmina, M. (2011). Biaxial stretching of polymers using a novel and versatile stretching system. Polymer Eng Sci, 51(7), 1347–1353. https://doi.org/10.1002/pen.21869.
Qaiss, A., Saidi, H., Fassi-Fehri, O., & Bousmina, M. (2012). Cellular polypropylene-based piezoelectric films. Polymer Eng Sci, 52(12), 2637–2644. https://doi.org/10.1002/pen.23219.
Qaiss, A., Saidi, H., Fassi-Fehri, O., & Bousmina, M. (2013). Theoretical modeling and experiments on the piezoelectric coefficient in cellular polymer films. Polymer Eng Sci, 53(1), 105–111. https://doi.org/10.1002/pen.23234.
Rahman, M. R., Huque, M. M., Islam, M. N., & Hasan, M. (2008). Improvement of physico-mechanical properties of jute fiber reinforced polypropylene composites by post-treatment. Compos A: Appl Sci Manuf, 39(11), 1739–1747. https://doi.org/10.1016/j.compositesa.2008.08.002.
Rahman, M. R., Huque, M. M., Islam, M. N., & Hasan, M. (2009). Mechanical properties of polypropylene composites reinforced with chemically treated abaca. Compos A: Appl Sci Manuf, 40(4), 511–517. https://doi.org/10.1016/j.compositesa.2009.01.013.
Rana, A. K., Mandal, A., & Bandyopadhyay, S. (2003). Short jute fiber reinforced polypropylene composites: effect of compatibiliser, impact modifier and fiber loading. Compos Sci Technol, 63(6), 801–806. https://doi.org/10.1016/S0266-3538(02)00267-1.
Reddy, N. and Yang, Y.Q. (2005) Biofibers from agricultural byproducts for industrial applications. Trends in Biotechnology, 23, No.1.
Rees, H., Brown, P., & Grund, M. (1982). U.S. Patent No. 4,330,257. Washington, DC: U.S. Patent and Trademark Office.
Rezaur Rahman, M., Hasan, M., MonimulHuque, M., & Nazrul Islam, M. (2010). Physico-mechanical properties of jute fiber reinforced polypropylene composites. J Reinforced Plastics Composites, 29(3), 445–455. https://doi.org/10.1177/0731684408098008.
Ribeiro, B. (2005). Support vector machines for quality monitoring in a plastic injection molding process. IEEE Trans Syst Man Cyber C (Applications and Reviews), 35(3), 401–410. https://doi.org/10.1109/TSMCC.2004.843228.
Roger, A. J. (1954). U.S. Patent No. 2,689,978. Washington, DC: U.S.
Rokbi, M., Osmani, H., Imad, A., & Benseddiq, N. (2011). Effect of chemical treatment on flexure properties of natural fiber-reinforced polyester composite. procedia Engineering, 10(0), 2092-2097, DOI: https://doi.org/10.1016/j.proeng.2011.04.346.
Rozman, H. D., Tan, K. W., Kumar, R. N., Abubakar, A., Ishak, Z. M., & Ismail, H. (2000). The effect of lignin as a compatibilizer on the physical properties of coconut fiber–polypropylene composites. Eur Polym J, 36(7), 1483–1494. https://doi.org/10.1016/S0014-3057(99)00200-1.
Sadeghi, B. H. M. (2000). A BP-neural network predictor model for plastic injection molding process. J Mater Process Technol, 103(3), 411–416. https://doi.org/10.1016/S0924-0136(00)00498-2.
Samouh, Z., Molnar, K., Boussu, F., Cherkaoui, O., & El Moznine, R. (2019). Mechanical and thermal characterization of sisal fiber reinforced polylactic acid composites. Polymers Adv Technol, 30(3), 529–537. https://doi.org/10.1002/pat.4488.
Sanadi, A. R., Calufield, D. F., & Rowell, R. M. (1994). Reinforcing polypropylene with natural fibers. Plastics Eng (USA), 50(4), 27–28.
Sanadi, A. R., Caulfield, D. F., Jacobson, R. E., & Rowell, R. M. (1995). Renewable agricultural fibers as reinforcing fillers in plastics: mechanical properties of kenaf fiber-polypropylene composites. Industr Eng Chem Res, 34(5), 1889–1896. https://doi.org/10.1021/ie00044a041.
Sanjay, M. R., Arpitha, G. R., Naik, L. L., Gopalakrishna, K., & Yogesha, B. (2016). Applications of natural fibers and its composites: an overview. Nat Res, 7(3), 108–114. https://doi.org/10.4236/nr.2016.73011.
Sarasini, F., Tirillo, J., Puglia, D., Kenny, J. M., Dominici, F., Santulli, C., … De Santis, R. (2015). Effect of different lignocellulosic fibres on poly (ε-caprolactone)-based composites for potential applications in orthotics. RSC Adv, 5(30), 23798–23809. https://doi.org/10.1039/C5RA00832H.
Sarikaya, E., Çallioğlu, H., & Demirel, H. (2019). Production of epoxy composites reinforced by different natural fibers and their mechanical properties. Compos Part B Eng, 167, 461–466. https://doi.org/10.1016/j.compositesb.2019.03.020.
Satyanarayana, K. G., Sukumaran, K., Mukherjee, P. S., Pavithran, C., & Pillai, S. G. K. (1990). Natural fibre-polymer composites. Cement Concrete Composites, 12(2), 117–136. https://doi.org/10.1016/0958-9465(90)90049-4.
Schad, R. D. (1984). U.S. Patent No. 4,444,711. Washington, DC: U.S.
Schad, R. D. (1986). U.S. Patent No. 4,588,367. Washington, DC: U.S.
Schad, R. D., & Pocock, J. (1989). U.S. Patent No. 4,836,767. Washington, DC: U.S.
Schift, H., David, C., Gabriel, M., Gobrecht, J., Heyderman, L. J., Kaiser, W., … Scandella, L. (2000). Nanoreplication in polymers using hot embossing and injection molding. Microelectronic Eng, 53(1-4), 171–174. https://doi.org/10.1016/S0167-9317(00)00289-6.
Schmidt, H. (1994). U.S. Patent No. 5,360,333. Washington, DC: U.S..
Schut, J. (2002a). Why long-glass molders are compounding in-line. Plastics Technol, 48(4), 52–59.
Schut, J. H. (2002b). Long-glass leader: how faurecia helped put TP composites in the driver’s seat. Plastics Technol, 48(8), 44–48.
Schut, J. H. (2003). Long-fiber thermoplastics: extend their reach. Plastics Technol, 49(4), 56–61.
SemlaliAouraghHassani, F. Z., Ouarhim, W., Zari, N., Bensalah, M. O., Rodrigue, D., Bouhfid, R., & Qaiss, A. E. K. (2019). Injection molding of short coir fiber polypropylene biocomposites: prediction of the mold filling phase. Polym Compos, 40(10), 4042–4055. https://doi.org/10.1002/pc.25265.
Shah, N., Fehrenbach, J., & Ulven, C. A. (2019). Hybridization of hemp fiber and recycled-carbon fiber in polypropylene composites. Sustainability, 11(11), 3163. https://doi.org/10.3390/su11113163.
Shao, M. W., Huang, J. J., Chen, Y. X., & Hwang, S. S. (2019). Synthesis and characterization of the microcellular injection molded PA6/flax and the PA6/graphene nanocomposites. In IOP Conference Series: Materials Science and Engineering (Vol. 542, No. 1, p. 012067). Xiamen: IOP Publishing.
Shibata, M., Ozawa, K., Teramoto, N., Yosomiya, R., & Takeishi, H. (2003). Biocomposites made from short abaca fiber and biodegradable polyesters. Macromol Mat Eng, 288(1), 35–43. https://doi.org/10.1002/mame.200290031.
Shoichi, T. (1968). U.S. Patent No. 3,417,433. Washington, DC: U.S.
Shon, K., & White, J. L. (1999). A comparative study of fiber breakage in compounding glass fiber-reinforced thermoplastics in a buss kneader, modular co-rotating and counter-rotating twin screw extruders. Polymer Eng Sci, 39(9), 1757–1768. https://doi.org/10.1002/pen.11570.
Singh, H., Singh, J. I. P., Singh, S., Dhawan, V., & Tiwari, S. K. (2018). A brief review of jute fibre and its composites. Mat Today Proc, 5(14), 28427–28437.
Singh, S., & Mohanty, A. K. (2007). Wood fiber reinforced bacterial bioplastic composites: fabrication and performance evaluation. Compos Sci Technol, 67(9), 1753–1763. https://doi.org/10.1016/j.compscitech.2006.11.009.
Sinha, A. K., Bhattacharya, S., & Narang, H. K. (2020). Abaca fibre reinforced polymer composites: a review. J Mater Sci, 56(7), 4569–4587.
Sood, M., & Dwivedi, G. (2018). Effect of fiber treatment on flexural properties of natural fiber reinforced composites: a review. Egypt J Petroleum, 27(4), 775–783. https://doi.org/10.1016/j.ejpe.2017.11.005.
Stark, N. M., & Rowlands, R. E. (2003). Effects of wood fiber characteristics on mechanical properties of wood/polypropylene composites. Wood and fiber science. Vol. 35, no. 2 (2003): Pages 167-174.
Subasinghe, A. D. L., Das, R., & Bhattacharyya, D. (2015). Fiber dispersion during compounding/injection molding of PP/kenaf composites: flammability and mechanical properties. Mat Design, 86, 500–507. https://doi.org/10.1016/j.matdes.2015.07.126.
Sun, Z., & Mingming, W. (2019). Effects of sol-gel modification on the interfacial and mechanical properties of sisal fiber reinforced polypropylene composites. Ind Crop Prod, 137, 89–97. https://doi.org/10.1016/j.indcrop.2019.05.021.
Sun, Z. Y., Han, H. S., & Dai, G. C. (2010). Mechanical properties of injection-molded natural fiber-reinforced polypropylene composites: formulation and compounding processes. J Reinforced Plastics Composites, 29(5), 637–650. https://doi.org/10.1177/0731684408100264.
Sykacek, E., Hrabalova, M., Frech, H., & Mundigler, N. (2009). Extrusion of five biopolymers reinforced with increasing wood flour concentration on a production machine, injection moulding and mechanical performance. Compos A: Appl Sci Manuf, 40(8), 1272–1282. https://doi.org/10.1016/j.compositesa.2009.05.023.
Tamakuwala, V. R. (2020). Manufacturing of fiber reinforced polymer by using VARTM process: a review. Materials Today: Proceedings.
Tavares, T. D., Antunes, J. C., Ferreira, F., & Felgueiras, H. P. (2020). Biofunctionalization of natural fiber-reinforced biocomposites for biomedical applications. Biomolecules, 10(1), 148. https://doi.org/10.3390/biom10010148.
Thiriez, A., & Gutowski, T. (2006). An environmental analysis of injection molding. In Proceedings of the 2006 IEEE International Symposium on Electronics and the Environment, (pp. 195-200). IEEE.
Tholibon, D., Tharazi, I., Sulong, A. B., Muhamad, N., Ismial, N. F., Radzi, M. K. F. M., … Hui, D. (2019). Kenaf fiber composites: a review on synthetic and biodegradable polymer matrix. J Kejuruter, 31, 65–76.
Thomason, J. L. (2002). The influence of fibre length and concentration on the properties of glass fibre reinforced polypropylene: 5. Injection moulded long and short fibre PP. Compos A: Appl Sci Manuf, 33(12), 1641–1652. https://doi.org/10.1016/S1359-835X(02)00179-3.
Thomason, J. L. (2010). Dependence of interfacial strength on the anisotropic fiber properties of jute reinforced composites. Polym Compos, 31(9), 1525–1534. https://doi.org/10.1002/pc.20939.
Thwe, M. M., & Liao, K. (2003). Durability of bamboo-glass fiber reinforced polymer matrix hybrid composites. Compos Sci Technol, 63(3-4), 375–387. https://doi.org/10.1016/S0266-3538(02)00225-7.
Tokoro, R., Vu, D. M., Okubo, K., Tanaka, T., Fujii, T., & Fujiura, T. (2008). How to improve mechanical properties of polylactic acid with bamboo fibers. J Mater Sci, 43(2), 775–787. https://doi.org/10.1007/s10853-007-1994-y.
Várdai, R., Lummerstorfer, T., Pretschuh, C., Jerabek, M., Gahleitner, M., Bartos, A., … Pukánszky, B. (2021). Improvement of the impact resistance of natural fiber–reinforced polypropylene composites through hybridization. Polymers Adv Technol, 32(6), 2499–2507. https://doi.org/10.1002/pat.5280.
Vedrtnam, A., Kumar, S., & Chaturvedi, S. (2019). Experimental study on mechanical behavior, biodegradability, and resistance to natural weathering and ultraviolet radiation of wood-plastic composites. Compos Part B Eng, 176, 107282. https://doi.org/10.1016/j.compositesb.2019.107282.
Vinod, B., & Anandajothi, M. (2020). Mechanical and tribological properties of abaca-roselle/cardanol formaldehyde hybrid composites. Mat Res Express, 6(12), 125363. https://doi.org/10.1088/2053-1591/ab66fa.
Wang, J. L. (2012). Application of composite materials on sports equipments. In Applied Mechanics and Materials (Vol. 155, pp. 903-906). Trans Tech Publications Ltd.
Wong, S. C., & Mai, Y. W. (1999). Essential fracture work of short fiber reinforced polymer blends. Polymer Eng Sci, 39(2), 356–364. https://doi.org/10.1002/pen.11422.
Xie, X. L., Li, R. K. Y., Tjong, S. C., & Mai, Y. W. (2002). Structural properties and mechanical behavior of injection molded composites of polypropylene and sisal fiber. Polym Compos, 23(3), 319–328. https://doi.org/10.1002/pc.10434.
Xu, H., Liu, C. Y., Chen, C., Hsiao, B. S., Zhong, G. J., & Li, Z. M. (2012). Easy alignment and effective nucleation activity of ramie fibers in injection-molded poly (lactic acid) biocomposites. Biopolymers, 97(10), 825–839. https://doi.org/10.1002/bip.22079.
Yan, X., Shen, H., Yu, L., & Hamada, H. (2017). Polypropylene–glass fiber/basalt fiber hybrid composites fabricated by direct fiber feeding injection molding process. J Appl Polym Sci, 134(44), 45472. https://doi.org/10.1002/app.45472.
Yang, Y., Ota, T., Morii, T., & Hamada, H. (2011). Mechanical property and hydrothermal aging of injection molded jute/polypropylene composites. J Mater Sci, 46(8), 2678–2684. https://doi.org/10.1007/s10853-010-5134-8.
Yap, S. Y., Sreekantan, S., Hassan, M., Sudesh, K., & Ong, M. T. (2021). Characterization and biodegradability of rice husk-filled polymer composites. Polymers, 13(1), 104. https://doi.org/10.3390/polym13010104.
Yu, S., Hwang, J. Y., & Hong, S. H. (2020). 3D microstructural characterization and mechanical properties determination of short basalt fiber-reinforced polyamide 6, 6 composites. Compos Part B Eng, 187, 107839. https://doi.org/10.1016/j.compositesb.2020.107839.
Yussuf, A. A., Massoumi, I., & Hassan, A. (2010). Comparison of polylactic acid/kenaf and polylactic acid/rise husk composites: the influence of the natural fibers on the mechanical, thermal and biodegradability properties. J Polym Environ, 18(3), 422–429. https://doi.org/10.1007/s10924-010-0185-0.
Zhang, J., Park, C. B., Rizvi, G. M., Huang, H., & Guo, Q. (2009). Investigation on the uniformity of high-density polyethylene/wood fiber composites in a twin-screw extruder. J Appl Polym Sci, 113(4), 2081–2089. https://doi.org/10.1002/app.29991.
Zhang, Y., Xi, D., Yang, H., Tao, F., & Wang, Z. (2019). Cloud manufacturing based service encapsulation and optimal configuration method for injection molding machine. J Intell Manuf, 30(7), 2681–2699. https://doi.org/10.1007/s10845-017-1322-6.