Injection-molded natural fiber-reinforced polymer composites–a review

M.S. Rabbi1, Tansirul Islam1, G. M. Sadiqul Islam2
1Department of Mechanical Engineering, Chittagong University of Engineering and Technology (CUET), Chattogram, 4349, Bangladesh
2Department of Civil Engineering, Chittagong University of Engineering and Technology (CUET), Chattogram, 4349, Bangladesh

Tóm tắt

AbstractFor the last couple of decades, researchers have been trying to explore eco-friendly materials which would significantly reduce the dependency on synthetic fibers and their composites. Natural fiber-based composites possess several excellent properties. They are biodegradable, non-abrasive, low cost, and lower density, which led to the growing interest in using these materials in industrial applications. However, the properties of composite materials depend on the chemical treatment of the fiber, matrix combination, and fabrication process. This study gives a bibliographic review on bio-composites specially fabricated by the injection-molding method. Technical information of injection-molded natural fiber reinforcement-based composites, especially their type and compounding process prior to molding, are discussed. A wide variety of injection-molding machines was used by the researchers for the composite manufacturing. Injection-molded composites contain natural fiber, including hemp, jute, sisal, flax, abaca, rice husk, kenaf, bamboo, and some miscellaneous kinds of fibers, are considered in this study.

Từ khóa


Tài liệu tham khảo

Abdelwahab, M. A., Rodriguez-Uribe, A., Misra, M., Mohanty, K., & A. (2019). Injection molded novel biocomposites from polypropylene and sustainable biocarbon. Molecules, 24(22), 4026. https://doi.org/10.3390/molecules24224026.

Abu-Sharkh, B. F., & Hamid, H. (2004). Degradation study of date palm fibre/polypropylene composites in natural and artificial weathering: mechanical and thermal analysis. Polym Degrad Stab, 85(3), 967–973. https://doi.org/10.1016/j.polymdegradstab.2003.10.022.

Adeniyi, A. G., Onifade, D. V., Ighalo, J. O., & Adeoye, A. S. (2019). A review of coir fiber reinforced polymer composites. Compos Part B Eng, 176, 107305. https://doi.org/10.1016/j.compositesb.2019.107305.

Agüero, Á., Lascano, D., Garcia-Sanoguera, D., Fenollar, O., & Torres-Giner, S. (2020). Valorization of linen processing by-products for the development of injection-molded green composite pieces of polylactide with improved performance. Sustainability, 12(2), 652. https://doi.org/10.3390/su12020652.

Aliotta, L., Gigante, V., Coltelli, M. B., Cinelli, P., Lazzeri, A., & Seggiani, M. (2019). Thermo-mechanical properties of PLA/short flax fiber biocomposites. Appl Sci, 9(18), 3797. https://doi.org/10.3390/app9183797.

Alvarez, V., Vazquez, A., & Bernal, C. (2006). Effect of microstructure on the tensile and fracture properties of sisal fiber/starch-based composites. J Compos Mater, 40(1), 21–35. https://doi.org/10.1177/0021998305053508.

Alvarez, V. A., Terenzi, A., Kenny, J. M., & Vazquez, A. (2004). Melt rheological behavior of starch-based matrix composites reinforced with short sisal fibers. Polymer Eng Sci, 44(10), 1907–1914. https://doi.org/10.1002/pen.20193.

Anal, I. & Verma, D. (2017).Construction materials reinforced with natural products, Springer International Publishing.Handbook of Ecomaterials, 1-24.

Anbupalani, M. S., Venkatachalam, C. D., & Rathanasamy, R. (2020). Influence of coupling agent on altering the reinforcing efficiency of natural fibre-incorporated polymers–a review. J Reinforced Plastics Composites, 39(13-14), 520–544. https://doi.org/10.1177/0731684420918937.

Andrzejewski, J., Szostak, M., Barczewski, M., & Łuczak, P. (2019). Cork-wood hybrid filler system for polypropylene and poly(lactic acid) based injection molded composites. Structure evaluation and mechanical performance. Compos Part B Eng, 163, 655–668. https://doi.org/10.1016/j.compositesb.2018.12.109.

Ansari, F., Granda, L. A., Joffe, R., Berglund, L. A., & Vilaseca, F. (2017). Experimental evaluation of anisotropy in injection molded polypropylene/wood fiber biocomposites. Compos A: Appl Sci Manuf, 96, 147–154. https://doi.org/10.1016/j.compositesa.2017.02.003.

Arao, Y., Fujiura, T., Itani, S., & Tanaka, T. (2015). Strength improvement in injection-molded jute-fiber-reinforced polylactide green-composites. Compos Part B Eng, 68, 200–206. https://doi.org/10.1016/j.compositesb.2014.08.032.

Arbelaiz, A., Fernández, B., Cantero, G., Llano-Ponte, R., Valea, A., & Mondragon, I. (2005). Mechanical properties of flax fibre/polypropylene composites. Influence of fibre/matrix modification and glass fibre hybridization. Compos A: Appl Sci Manuf, 36(12), 1637–1644. https://doi.org/10.1016/j.compositesa.2005.03.021.

Arbelaiz, A., Fernandez, B., Ramos, J. A., & Mondragon, I. (2006). Thermal and crystallization studies of short flax fibre reinforced polypropylene matrix composites: effect of treatments. Thermochimica Acta, 440(2), 111–121. https://doi.org/10.1016/j.tca.2005.10.016.

Aridi, N. A. M., Sapuan, S. M., Zainudin, E. S., & Al-Oqla, F. M. (2016). Mechanical and morphological properties of injection-molded rice husk polypropylene composites. Int J Polymer Anal Charac, 21(4), 305–313. https://doi.org/10.1080/1023666X.2016.1148316.

Arrakhiz, F. Z., Malha, M., Bouhfid, R., Benmoussa, K., & Qaiss, A. (2013). Tensile, flexural and torsional properties of chemically treated alfa, coir and bagasse reinforced polypropylene. Compos Part B Eng, 47, 35–41. https://doi.org/10.1016/j.compositesb.2012.10.046.

Assarar, M., Scida, D., Zouari, W., Saidane, E. H., & Ayad, R. (2016). Acoustic emission characterization of damage in short hemp-fiber-reinforced polypropylene composites. Polym Compos, 37(4), 1101–1112. https://doi.org/10.1002/pc.23272.

T. Aurich, T. Lampke, G. Mennig, and B. Wielage, Werk- SbffeinderFertigung, 36, 12 (1998).

Aurich, T., & Mennig, G. (2001). Flow-induced fiber orientation in injection molded fit fiber reinforced polypropylene. Polym Compos, 22(5), 680–689. https://doi.org/10.1002/pc.10570.

Bakis, C. E., Bank, L. C., Brown, V., Cosenza, E., Davalos, J. F., Lesko, J. J., … Triantafillou, T. C. (2002). Fiber-reinforced polymer composites for construction—state-of-the-art review. J Compos Construction, 6(2), 73–87. https://doi.org/10.1061/(ASCE)1090-0268(2002)6:2(73).

Balasubramanian, K., Sultan, M. T., & Rajeswari, N. (2018). Manufacturing techniques of composites for aerospace applications. In Sustainable Composites for Aerospace Applications (pp. 55-67). Cambridge: Woodhead Publishing.

Baran, I., Cinar, K., Ersoy, N., Akkerman, R., & Hattel, J. H. (2017). A review on the mechanical modeling of composite manufacturing processes. Arch Comput Methods Eng, 24(2), 365–395. https://doi.org/10.1007/s11831-016-9167-2.

Bax, B., & Müssig, J. (2008). Impact and tensile properties of PLA/Cordenka and PLA/flax composites. Compos Sci Technol, 68(7-8), 1601–1607. https://doi.org/10.1016/j.compscitech.2008.01.004.

Beckermann, G. W., & Pickering, K. L. (2008). Engineering and evaluation of hemp fibre reinforced polypropylene composites: fibre treatment and matrix modification. Compos A: Appl Sci Manuf, 39(6), 979–988. https://doi.org/10.1016/j.compositesa.2008.03.010.

Beg, M. D. H., & Pickering, K. L. (2006). Fiber pretreatment and its effects on wood fiber reinforced polypropylene composites. Mat Manufac Proc, 21(3), 303–307. https://doi.org/10.1080/10426910500464750.

Biagiotti, J., Puglia, D., Torre, L., Kenny, J. M., Arbelaiz, A., Cantero, G., … Mondragon, I. (2004). A systematic investigation on the influence of the chemical treatment of natural fibers on the properties of their polymer matrix composites. Polym Compos, 25(5), 470–479. https://doi.org/10.1002/pc.20040.

Birat, K. C., Panthapulakkal, S., Kronka, A., Agnelli, J. A. M., Tjong, J., & Sain, M. (2015). Hybrid biocomposites with enhanced thermal and mechanical properties for structural applications. J Appl Polym Sci, 132(34). https://doi.org/10.1002/app.42452.

Black, S. (2017). Looking to lighten up aircraft interiors-with natural fibers?

Bledzki, A. K., & Faruk, O. (2006). Injection moulded microcellular wood fibre–polypropylene composites. Compos A: Appl Sci Manuf, 37(9), 1358–1367. https://doi.org/10.1016/j.compositesa.2005.08.010.

Bledzki, A. K., & Gassan, J. (1999). Composites reinforced with cellulose based fibres. Prog Polym Sci, 24(2), 221–274. https://doi.org/10.1016/S0079-6700(98)00018-5.

Bledzki, A. K., Jaszkiewicz, A., & Scherzer, D. (2009). Mechanical properties of PLA composites with man-made cellulose and abaca fibres. Compos A: Appl Sci Manuf, 40(4), 404–412. https://doi.org/10.1016/j.compositesa.2009.01.002.

Bledzki, A. K., Mamun, A. A., Jaszkiewicz, A., & Erdmann, K. (2010). Polypropylene composites with enzyme modified abaca fibre. Compos Sci Technol, 70(5), 854–860. https://doi.org/10.1016/j.compscitech.2010.02.003.

Bledzki, A. K., Mamun, A. A., Lucka-Gabor, M., & Gutowski, V. S. (2008). The effects of acetylation on properties of flax fibre and its polypropylene composites. Express Polymer Letters, 2(6), 413–422. https://doi.org/10.3144/expresspolymlett.2008.50.

Boegler, O., Kling, U., Empl, D., & Isikveren, A. T. (2015). Potential of sustainable materials in wing structural design (pp. 16-18). Bonn: Deutsche Gesellschaft fürLuft-und Raumfahrt-Lilienthal-Oberth eV.

Bos, H. L., Müssig, J., & van den Oever, M. J. (2006). Mechanical properties of short-flax-fibre reinforced compounds. Compos A: Appl Sci Manuf, 37(10), 1591–1604. https://doi.org/10.1016/j.compositesa.2005.10.011.

Bouafif, H., Koubaa, A., Perré, P., & Cloutier, A. (2009). Effects of fiber characteristics on the physical and mechanical properties of wood plastic composites. Compos A: Appl Sci Manuf, 40(12), 1975–1981.

Cabral, H., Cisneros, M., Kenny, J. M., Vazquez, A., & Bernal, C. R. (2005). Structure–properties relationship of short jute fiber-reinforced polypropylene composites. JCompos Materials, 39(1), 51–65. https://doi.org/10.1177/0021998305046434.

Cantero, G., Arbelaiz, A., Llano-Ponte, R., & Mondragon, I. (2003). Effects of fibre treatment on wettability and mechanical behaviour of flax/polypropylene composites. Compos Sci Technol, 63(9), 1247–1254. https://doi.org/10.1016/S0266-3538(03)00094-0.

Chaitanya, S., & Singh, I. (2017). Processing of PLA/sisal fiber biocomposites using direct-and extrusion-injection molding. Mat Manufac Proc, 32(5), 468–474. https://doi.org/10.1080/10426914.2016.1198034.

Chaitanya, S., Singh, I., & Song, J. I. (2019). Recyclability analysis of PLA/sisal fiber biocomposites. Compos Part B Eng, 173, 106895. https://doi.org/10.1016/j.compositesb.2019.05.106.

Chandramohan, D., & Marimuthu, K. (2011). Tensile and hardness tests on natural fiber reinforced polymer composite material. Int J Adv Eng Sci Technol, 6(1), 97–104.

Chiu, C. P., Shih, L. C., & Wei, J. H. (1991). Dynamic modeling of the mold filling process in an injection molding machine. Polymer Eng Sci, 31(19), 1417–1425. https://doi.org/10.1002/pen.760311908.

Chow, C. P. L., Xing, X. S., & Li, R. K. Y. (2007). Moisture absorption studies of sisal fibre reinforced polypropylene composites. Compos Sci Technol, 67(2), 306–313. https://doi.org/10.1016/j.compscitech.2006.08.005.

Chung, T. J., Park, J. W., Lee, H. J., Kwon, H. J., Kim, H. J., Lee, Y. K., & Tai Yin Tze, W. (2018). The improvement of mechanical properties, thermal stability, and water absorption resistance of an eco-friendly PLA/kenaf biocomposite using acetylation. Appl Sci, 8(3), 376. https://doi.org/10.3390/app8030376.

da Silva Moura, A., Demori, R., Leão, R. M., Frankenberg, C. L. C., & Santana, R. M. C. (2019). The influence of the coconut fiber treated as reinforcement in PHB (polyhydroxybutyrate) composites. Mat Today Commun, 18, 191–198. https://doi.org/10.1016/j.mtcomm.2018.12.006.

Dasore, A., Rajak, U., Balijepalli, R., Verma, T. N., & Ramakrishna, K. (2021). An overview of refinements, processing methods and properties of natural fiber composites. Materials Today: Proceedings.

Dinerman, A., & Steffens, N. L. (1991). U.S. Patent No. 5,035,605. Washington, DC: U.S. Patent and Trademark Office.

Elkington, M., Bloom, D., Ward, C., Chatzimichali, A., & Potter, K. (2015). Hand layup: understanding the manual process. Adv Manufac Polymer Compos Sci, 1(3), 138–151.

Eloy, F. S., Costa, R. R. C., De Medeiros, R., Ribeiro, M. L., & Tita, V. (2015). Comparison between mechanical properties of bio and synthetic composites for use in aircraft interior structures. In Meeting on Aeronautical Composite Materials and Structures. São Carlos: University of São Paulo.

Espinach, F. X., Granda, L. A., Tarrés, Q., Duran, J., Fullana-i-Palmer, P., & Mutjé, P. (2017). Mechanical and micromechanical tensile strength of eucalyptus bleached fibers reinforced polyoxymethylene composites. Compos Part B Eng, 116, 333–339. https://doi.org/10.1016/j.compositesb.2016.10.073.

Fajardo Cabrera de Lima, L. D. P., Santana, R. M. C., & Chamorro Rodríguez, C. D. (2020). Influence of coupling agent in mechanical, physical and thermal properties of polypropylene/bamboo fiber composites: under natural outdoor aging. Polymers, 12(4), 929. https://doi.org/10.3390/polym12040929.

Fara, S., & Pavan, A. (2004). Fibre orientation effects on the fracture of short fibre polymer composites: on the existence of a critical fibre orientation on varying internal material variables. J Mater Sci, 39(11), 3619–3628. https://doi.org/10.1023/B:JMSC.0000030714.13161.f6.

Fernandes, C., Pontes, A. J., Viana, J. C., & Gaspar-Cunha, A. (2018). Modeling and optimization of the injection-molding process: a review. Adv Polymer Technol, 37(2), 429–449. https://doi.org/10.1002/adv.21683.

Fiore, V., Di Bella, G., & Valenza, A. (2015). The effect of alkaline treatment on mechanical properties of kenaf fibers and their epoxy composites. Compos Part B Eng, 68, 14–21. https://doi.org/10.1016/j.compositesb.2014.08.025.

Fung, K. L., Li, R. K. Y., & Tjong, S. C. (2002). Interface modification on the properties of sisal fiber-reinforced polypropylene composites. J Appl Polym Sci, 85(1), 169–176. https://doi.org/10.1002/app.10584.

Fung, K. L., Xing, X. S., Li, R. K. Y., Tjong, S. C., & Mai, Y. W. (2003). An investigation on the processing of sisal fibre reinforced polypropylene composites. Compos Sci Technol, 63(9), 1255–1258. https://doi.org/10.1016/S0266-3538(03)00095-2.

Galt, J., Kestle, M., &Yetter, J. (1998). U.S. Patent No. 5,707,667. Washington, DC: U.S.

Gao, S. L., & Mäder, E. (2006). Jute/polypropylene composites I. Effect of matrix modification. Compos Sci Technol, 66(7-8), 952–963.

H. Gaub, Reinf. Plast. (2015), doi:https://doi.org/10.1016/j.repl.2015.09.004

Glaesener, P., &Kestle, M. R. (1997). U.S. Patent No. 5,620,723. Washington, DC: U.S.,1997.

González-López, M. E., Pérez-Fonseca, A. A., Manríquez-González, R., Arellano, M., Rodrigue, D., & Robledo-Ortíz, J. R. (2019). Effect of surface treatment on the physical and mechanical properties of injection molded poly (lactic acid)-coir fiber biocomposites. Polym Compos, 40(6), 2132–2141. https://doi.org/10.1002/pc.24997.

Gunturu, B., Vemulapalli, C., Malkapuram, R., & Konduru, N. (2020). Investigation on mechanical, thermal and water absorption properties of banana/coir reinforced polypropylene hybrid composites investigation on mechanical, thermal and water absorption properties of banana/coir reinforced polypropylene hybrid composites. Revue des Composites et des MatériauxAvancés, 30.

Guo, G., & Kethineni, C. (2020). Direct injection molding of hybrid polypropylene/wood-fiber composites reinforced with glass fiber and carbon fiber. Int J Adv Manufac Technol, 106(1), 201–209. https://doi.org/10.1007/s00170-019-04572-7.

Gupta, G., Kumar, A., Tyagi, R., & Kumar, S. (2016). Application and future of composite materials: a review. Int J Innov Res Sci Eng Technol, 5(5), 6907–6911.

Hao, X., Zhou, H., Mu, B., Chen, L., Guo, Q., Yi, X., … Ou, R. (2020). Effects of fiber geometry and orientation distribution on the anisotropy of mechanical properties, creep behavior, and thermal expansion of natural fiber/HDPE composites. Compos Part B Eng, 185, 107778. https://doi.org/10.1016/j.compositesb.2020.107778.

Hasan, K. F., Horváth, P. G., Bak, M., & Alpár, T. (2021). A state-of-the-art review on coir fiber-reinforced biocomposites. RSC Adv, 11(18), 10548–10571. https://doi.org/10.1039/D1RA00231G.

Hashemi, S. (2002). Influence of temperature on weldline strength of injection moulded short glass fibre styrene maleic anhydride polymer composites. Plastics Rubber Composites, 31(7), 318–324. https://doi.org/10.1179/146580102225005027.

Havlicsek, H., & Alleyne, A. (1999). Nonlinear control of an electrohydraulic injection molding machine via iterative adaptive learning. IEEE/ASME Trans Mechatronics, 4(3), 312–323. https://doi.org/10.1109/3516.789689.

Hepworth, D. G., Hobson, R. N., Bruce, D. M., & Farrent, J. W. (2000). The use of untreated hemp fibre in composite manufacture. Compos A: Appl Sci Manuf, 31(11), 1279–1283. https://doi.org/10.1016/S1359-835X(00)00098-1.

Hornsby, P. R., Hinrichsen, E., & Tarverdi, K. (1997). Preparation and properties of polypropylene composites reinforced with wheat and flax straw fibres: part I fibre characterization. J Mater Sci, 32(2), 443–449. https://doi.org/10.1023/A:1018521920738.

Huang, J. K., & Young, W. B. (2019). The mechanical, hygral, and interfacial strength of continuous bamboo fiber reinforced epoxy composites. Compos Part B Eng, 166, 272–283. https://doi.org/10.1016/j.compositesb.2018.12.013.

Ichazo, M. N., Albano, C., Gonzalez, J., Perera, R., & Candal, A. M. (2001). Polypropylene/wood flour composites: treatments and properties. Composite Structures, 54(2-3), 207–214. https://doi.org/10.1016/S0263-8223(01)00089-7.

Idumah, C. I., Ogbu, J. E., Ndem, J. U., & Obiana, V. (2019). Influence of chemical modification of kenaf fiber on xGNP-PP nano-biocomposites. SN Appl Sci, 1(10), 1–11. https://doi.org/10.1007/s42452-019-1319-1.

Ishak, Z. M., Yow, B. N., Ng, B. L., Khalil, H. A., & Rozman, H. D. (2001). Hygrothermal aging and tensile behavior of injection-molded rice husk-filled polypropylene composites. J Appl Polym Sci, 81(3), 742–753. https://doi.org/10.1002/app.1491.

Islam, M. N., Rahman, M. R., Haque, M. M., & Huque, M. M. (2010). Physico-mechanical properties of chemically treated coir reinforced polypropylene composites. Compos A: Appl Sci Manuf, 41(2), 192–198. https://doi.org/10.1016/j.compositesa.2009.10.006.

Jaafar, J., Siregar, J. P., Tezara, C., Hamdan, M. H. M., & Rihayat, T. (2019). A review of important considerations in the compression molding process of short natural fiber composites. Int J Adv Manufac Technol, 105(7), 3437–3450. https://doi.org/10.1007/s00170-019-04466-8.

Jariwala, H., & Jain, P. (2019). A review on mechanical behavior of natural fiber reinforced polymer composites and its applications. J Reinforced Plastics Composites, 38(10), 441–453. https://doi.org/10.1177/0731684419828524.

Jayaraman, K. (2003). Manufacturing sisal–polypropylene composites with minimum fibre degradation. Compos Sci Technol, 63(3-4), 367–374. https://doi.org/10.1016/S0266-3538(02)00217-8.

Jayaraman, K., & Bhattacharyya, D. (2004). Mechanical performance of woodfibre–waste plastic composite materials. Resource Conserv Recycling, 41(4), 307–319. https://doi.org/10.1016/j.resconrec.2003.12.001.

Jeyapragash, R., Srinivasan, V., & Sathiyamurthy, S. J. (2020). Mechanical properties of natural fiber/particulate reinforced epoxy composites–A review of the literature. Mat Today Proc, 22, 1223–1227.

Jiang, L., Huang, J., Qian, J., Chen, F., Zhang, J., Wolcott, M. P., & Zhu, Y. (2008). Study of poly (3-hydroxybutyrate-co-3-hydroxyvalerate)(PHBV)/bamboo pulp fiber composites: effects of nucleation agent and compatibilizer. J Polym Environ, 16(2), 83–93. https://doi.org/10.1007/s10924-008-0086-7.

Jiang, N., Yu, T., & Li, Y. (2018). Effect of hydrothermal aging on injection molded short jute fiber reinforced poly (lactic acid)(PLA) composites. J Polym Environ, 26(8), 3176–3186. https://doi.org/10.1007/s10924-018-1205-8.

Joseph, K., Thomas, S., & Pavithran, C. (1996). Effect of chemical treatment on the tensile properties of short sisal fibre-reinforced polyethylene composites. Polymer, 37(23), 5139–5149. https://doi.org/10.1016/0032-3861(96)00144-9.

Joseph, P. V., Joseph, K., & Thomas, S. (1999). Effect of processing variables on the mechanical properties of sisal-fiber-reinforced polypropylene composites. Composit Sci Technol, 59(11), 1625–1640. https://doi.org/10.1016/S0266-3538(99)00024-X.

Junkasem, J., Menges, J., & Supaphol, P. (2006). Mechanical properties of injection-molded isotactic polypropylene/roselle fiber composites. J Appl Polym Sci, 101(5), 3291–3300. https://doi.org/10.1002/app.23829.

Jyoti, A., Singh, R. K., Kumar, N., Aman, A. K., & Kar, M. (2021). ‘Synthesis and properties of amorphous nanosilica from rice husk and its composites. Mat Sci Eng B, 263, 114871. https://doi.org/10.1016/j.mseb.2020.114871.

Kalaprasad, G., Joseph, K., & Thomas, S. (1997). Influence of short glass fiber addition on the mechanical properties of sisal reinforced low density polyethylene composites. J Compos Materials, 31(5), 509–527. https://doi.org/10.1177/002199839703100504.

Karl, W. (1964). U.S. Patent No. 3,156,014. Washington, DC: U.S.

Karnani, R., Krishnan, M., & Narayan, R. (1997). Biofiber-reinforced polypropylene composites. Polymer Eng Sci, 37(2), 476–483. https://doi.org/10.1002/pen.11691.

Kc, B., Faruk, O., Agnelli, J. A. M., Leao, A. L., Tjong, J., & Sain, M. (2016). Sisal-glass fiber hybrid biocomposite: optimization of injection molding parameters using Taguchi method for reducing shrinkage. Compos A: Appl Sci Manuf, 83, 152–159. https://doi.org/10.1016/j.compositesa.2015.10.034.

Keller, A. (2003). Compounding and mechanical properties of biodegradable hemp fibre composites. Compos Sci Technol, 63(9), 1307–1316. https://doi.org/10.1016/S0266-3538(03)00102-7.

Keya, K. N., Kona, N. A., Koly, F. A., Maraz, K. M., Islam, M. N., & Khan, R. A. (2019). Natural fiber reinforced polymer composites: history, types, advantages and applications. Mat Eng Res, 1(2), 69–85. https://doi.org/10.25082/MER.2019.02.006.

Koffi, A., Koffi, D., & Toubal, L. (2021). Mechanical properties and drop-weight impact performance of injection-molded HDPE/birch fiber composites. Polymer Testing, 93, 106956. https://doi.org/10.1016/j.polymertesting.2020.106956.

Koronis, G., Silva, A., & Fontul, M. (2013). Green composites: a review of adequate materials for automotive applications. Compos Part B Eng, 44(1), 120–127. https://doi.org/10.1016/j.compositesb.2012.07.004.

Kumar, A., & Tumu, V. R. (2019). Physicochemical properties of the electron beam irradiated bamboo powder and its bio-composites with PLA. Compos Part B Eng, 175, 107098. https://doi.org/10.1016/j.compositesb.2019.107098.

Kumar, B. B., Doddamani, M., Zeltmann, S. E., Gupta, N., Ramesh, M. R., & Ramakrishna, S. (2016). Processing of cenosphere/HDPE syntactic foams using an industrial scale polymer injection molding machine. Mat Design, 92, 414–423. https://doi.org/10.1016/j.matdes.2015.12.052.

Kumar, S., Zindani, D., & Bhowmik, S. (2020). Investigation of mechanical and viscoelastic properties of flax-and ramie-reinforced green composites for orthopedic implants. J Mat Eng Perform, 29, 3161–3171.

Kuo, J. L., & Chang, M. T. (2015). Multiobjective design of turbo injection mode for axial flux motor in plastic injection molding machine by particle swarm optimization. Math Probl Eng. https://doi.org/10.1155/2015/974624.

Kuo, P. Y., Wang, S. Y., Chen, J. H., Hsueh, H. C., & Tsai, M. J. (2009). Effects of material compositions on the mechanical properties of wood–plastic composites manufactured by injection molding. Mat Design, 30(9), 3489–3496. https://doi.org/10.1016/j.matdes.2009.03.012.

Kusić, D., Božič, U., Monzón, M., Paz, R., & Bordón, P. (2020). Thermal and mechanical characterization of banana fiber reinforced composites for its application in injection molding. Materials, 13(16), 3581. https://doi.org/10.3390/ma13163581.

Kwon, H. J., Sunthornvarabhas, J., Park, J. W., Lee, J. H., Kim, H. J., Piyachomkwan, K., … Cho, D. (2014). Tensile properties of kenaf fiber and corn husk flour reinforced poly (lactic acid) hybrid bio-composites: role of aspect ratio of natural fibers. Compos Part B Eng, 56, 232–237. https://doi.org/10.1016/j.compositesb.2013.08.003.

Laczko, F. (1975). U.S. Patent No. 3,893,792. Washington, DC: U.S..

Lau, K. T., Hung, P. Y., Zhu, M. H., & Hui, D. (2018). Properties of natural fibre composites for structural engineering applications. Compos Part B Eng, 136, 222–233. https://doi.org/10.1016/j.compositesb.2017.10.038.

Le Bourhis, E., & Touchard, F. (2021). Mechanical properties of natural fiber composites. In Reference Module in Materials Science and Materials Engineering.

Le Troedec, M., Sedan, D., Peyratout, C., Bonnet, J. P., Smith, A., Guinebretiere, R., … Krausz, P. (2008). Influence of various chemical treatments on the composition and structure of hemp fibres. Compos A: Appl Sci Manuf, 39(3), 514–522. https://doi.org/10.1016/j.compositesa.2007.12.001.

Li, X., Tabil, L. G., Panigrahi, S., & Crerar, W. J. (2006). The influence of fiber content on properties of injection molded flax fiber-HDPE biocomposites. In 2006 ASAE annual meeting (p. 1). American Society of Agricultural and Biological Engineers.

Li, Y., Mai, Y. W., & Ye, L. (2000). Sisal fibre and its composites: a review of recent developments. Compos Sci Technol, 60(11), 2037–2055. https://doi.org/10.1016/S0266-3538(00)00101-9.

Link, C., Osmokrovic, L., & Fan, Y. (2019). U.S. Patent Application No. 16/248,162.

Liu, Y., Xie, J., Wu, N., Wang, L., Ma, Y., & Tong, J. (2019). Influence of silane treatment on the mechanical, tribological and morphological properties of corn stalk fiber reinforced polymer composites. Tribol Inter, 131, 398–405. https://doi.org/10.1016/j.triboint.2018.11.004.

Long, H., Wu, Z., Dong, Q., Shen, Y., Zhou, W., Luo, Y., … Dong, X. (2019). Mechanical and thermal properties of bamboo fiber reinforced polypropylene/polylactic acid composites for 3D printing. Polymer Eng Sci, 59(s2), E247–E260. https://doi.org/10.1002/pen.25043.

Madan, J., Mani, M., Lee, J. H., & Lyons, K. W. (2015). Energy performance evaluation and improvement of unit-manufacturing processes: injection molding case study. J Clean Prod, 105, 157–170. https://doi.org/10.1016/j.jclepro.2014.09.060.

Mai Nguyen Tran, T., Mn, P., Lee, D. W., Cabo, M. J., & Song, J. I. (2020). Polypropylene/abaca fiber eco-composites: influence of bio-waste additive on flame retardancy and mechanical properties. Polymer Composites.

Mansor, M. R., Nurfaizey, A. H., Tamaldin, N., & Nordin, M. N. A. (2019). Natural fiber polymer composites: utilization in aerospace engineering. In Biomass, Biopolymer-Based Materials, and Bioenergy (pp. 203-224). Cambridge: Woodhead Publishing.

Matsuda, K., Inaba, N., Kaminishi, M., Funabashi, T., & Tanaka, N. (1990). U.S. Patent No. 4,932,854. Washington, DC: U.S. Patent and Trademark Office.

Mianehrow, H., & Abbasian, A. (2017). Energy monitoring of plastic injection molding process running with hydraulic injection molding machines. J Clean Prod, 148, 804–810. https://doi.org/10.1016/j.jclepro.2017.02.053.

Migneault, S., Koubaa, A., Erchiqui, F., Chaala, A., Englund, K., & Wolcott, M. P. (2009). Effects of processing method and fiber size on the structure and properties of wood–plastic composites. Compos A: Appl Sci Manuf, 40(1), 80–85. https://doi.org/10.1016/j.compositesa.2008.10.004.

Miklos, M. and Gregory, R. (2003). Common mistakes in long-fibre molding, plastics technology, 49: 1;ProQuest Science Journals, p. 40.

Mirbagheri, J., Tajvidi, M., Hermanson, J. C., & Ghasemi, I. (2007). Tensile properties of wood flour/kenaf fiber polypropylene hybrid composites. J Appl Polym Sci, 105(5), 3054–3059. https://doi.org/10.1002/app.26363.

Mohammed, A. A. S., Bachtiar, D., Siregar, J. P., Rejab, M. R. B. M., & Hasany, S. F. (2016). Physicochemical study of eco-friendly sugar palm fiber thermoplastic polyurethane composites. BioResources, 11(4), 9438–9454. https://doi.org/10.15376/biores.11.4.9438-9454.

Mohan, M., Ansari, M. N. M., & Shanks, R. A. (2017). Review on the effects of process parameters on strength, shrinkage, and warpage of injection molding plastic component. Polym-Plast Technol Eng, 56(1), 1–12. https://doi.org/10.1080/03602559.2015.1132466.

Mohanty, A. K., Tummala, P., Liu, W., Misra, M., Mulukutla, P. V., & Drzal, L. T. (2005). Injection molded biocomposites from soy protein based bioplastic and short industrial hemp fiber. J Polym Environ, 13(3), 279–285. https://doi.org/10.1007/s10924-005-4762-6.

Mohanty, A. K., Wibowo, A., Misra, M., & Drzal, L. T. (2004). Effect of process engineering on the performance of natural fiber reinforced cellulose acetate biocomposites. Compos A: Appl Sci Manuf, 35(3), 363–370. https://doi.org/10.1016/j.compositesa.2003.09.015.

Morris, R. H., Geraldi, N. R., Stafford, J. L., Spicer, A., Hall, J., Bradley, C., & Newton, M. I. (2020). Woven natural fibre reinforced composite materials for medical imaging. Materials, 13(7), 1684. https://doi.org/10.3390/ma13071684.

Nematollahi, M., Karevan, M., Fallah, M., & Farzin, M. (2020). Experimental and numerical study of the critical length of short kenaf fiber reinforced polypropylene composites. Fibers Polymers, 21(4), 821–828. https://doi.org/10.1007/s12221-020-9600-x.

Nematollahi, M., Karevan, M., Mosaddegh, P., & Farzin, M. (2019). Morphology, thermal and mechanical properties of extruded injection molded kenaf fiber reinforced polypropylene composites. Mat Res Express, 6(9), 095409. https://doi.org/10.1088/2053-1591/ab2fbd.

Nyström, B. (1999/2000). Karakterisering av kompositers förbränningsegenskaper, SICOMP TR 01-009. Proj Rep VAMP, 18, 1999–2002.

Ohba, Y., Sazawa, M., Ohishi, K., Asai, T., Majima, K., Yoshizawa, Y., & Kageyama, K. (2009). Sensorless force control for injection molding machine using reaction torque observer considering torsion phenomenon. IEEE Trans Indus Electron, 56(8), 2955–2960. https://doi.org/10.1109/TIE.2009.2024444.

Okubo, K., Fujii, T., & Thostenson, E. T. (2009). Multi-scale hybrid biocomposite: processing and mechanical characterization of bamboo fiber reinforced PLA with microfibrillated cellulose. Compos A: Appl Sci Manuf, 40(4), 469–475. https://doi.org/10.1016/j.compositesa.2009.01.012.

Orue, A., Jauregi, A., Unsuain, U., Labidi, J., Eceiza, A., & Arbelaiz, A. (2016). The effect of alkaline and silane treatments on mechanical properties and breakage of sisal fibers and poly (lactic acid)/sisal fiber composites. Compos A: Appl Sci Manuf, 84, 186–195. https://doi.org/10.1016/j.compositesa.2016.01.021.

Osoka, E., Onukwuli, O. D., & Kamalu, C. (2018). Mechanical properties of selected natural fiber reinforced composites for automobile application. Am J Eng Res, 7, 384–388.

Osswald, T., & Hernández-Ortiz, J. P. (2006). Polymer processing. Modeling and Simulation. Munich: Hanser, 1-651, DOI: https://doi.org/10.3139/9783446412866.

Pailoor, S., Murthy, H. N., Hadimani, P., & Sreenivasa, T. N. (2019). Effect of chopped/continuous fiber, coupling agent and fiber ratio on the mechanical properties of injection-molded jute/polypropylene composites. J Natural Fibers, 16(1), 126–136. https://doi.org/10.1080/15440478.2017.1410510.

Panaitescu, D. M., Vuluga, Z., Sanporean, C. G., Nicolae, C. A., Gabor, A. R., & Trusca, R. (2019). High flow polypropylene/SEBS composites reinforced with differently treated hemp fibers for injection molded parts. Compos Part B Eng, 174, 107062. https://doi.org/10.1016/j.compositesb.2019.107062.

Panthapulakkal, S., & Sain, M. (2007). Injection-molded short hemp fiber/glass fiber-reinforced polypropylene hybrid composites—mechanical, water absorption and thermal properties. J Appl Polym Sci, 103(4), 2432–2441. https://doi.org/10.1002/app.25486.

Phillips, S., & Lessard, L. (2012). Application of natural fiber composites to musical instrument top plates. J Compos Materials, 46(2), 145–154. https://doi.org/10.1177/0021998311410497.

Pilla, S., Gong, S., O’Neill, E., Rowell, R. M., & Krzysik, A. M. (2008). Polylactide-pine wood flour composites. Polymer Eng Sci, 48(3), 578–587. https://doi.org/10.1002/pen.20971.

Pilla, S., Gong, S., O’Neill, E., Yang, L., & Rowell, R. M. (2009b). Polylactide-recycled wood fiber composites. J Appl Polym Sci, 111(1), 37-47, 1, DOI: https://doi.org/10.1002/app.28860.

Pilla, S., Kramschuster, A., Lee, J., Auer, G. K., Gong, S., & Turng, L. S. (2009a). Microcellular and solid polylactide–flax fiber composites. Composite Interfaces, 16(7-9), 869–890. https://doi.org/10.1163/092764409X12477467990283.

Piotter, V., Hanemann, T., Ruprecht, R., & Hausselt, J. (1997). Injection molding and related techniques for fabrication of microstructures. Microsystem Technol, 3(3), 129–133. https://doi.org/10.1007/s005420050069.

Puglia, D., Biagiotti, J., & Kenny, J. M. (2004). A review on natural fibre-based composites—Part II: Application of natural reinforcements in composite materials for automotive industry. J Natural Fibres, 1(3).

Punyamurthy, R., Sampathkumar, D., Bennehalli, B., &Badyankal, P. V. (2014). Study of the effect of chemical treatments on the tensile behaviour of abaca fiber reinforced polypropylene composites. J Adv Chem, 10(6), 2803–2811.

Qaiss, A., & Bousmina, M. (2011). Biaxial stretching of polymers using a novel and versatile stretching system. Polymer Eng Sci, 51(7), 1347–1353. https://doi.org/10.1002/pen.21869.

Qaiss, A., Saidi, H., Fassi-Fehri, O., & Bousmina, M. (2012). Cellular polypropylene-based piezoelectric films. Polymer Eng Sci, 52(12), 2637–2644. https://doi.org/10.1002/pen.23219.

Qaiss, A., Saidi, H., Fassi-Fehri, O., & Bousmina, M. (2013). Theoretical modeling and experiments on the piezoelectric coefficient in cellular polymer films. Polymer Eng Sci, 53(1), 105–111. https://doi.org/10.1002/pen.23234.

Rahman, M. R., Huque, M. M., Islam, M. N., & Hasan, M. (2008). Improvement of physico-mechanical properties of jute fiber reinforced polypropylene composites by post-treatment. Compos A: Appl Sci Manuf, 39(11), 1739–1747. https://doi.org/10.1016/j.compositesa.2008.08.002.

Rahman, M. R., Huque, M. M., Islam, M. N., & Hasan, M. (2009). Mechanical properties of polypropylene composites reinforced with chemically treated abaca. Compos A: Appl Sci Manuf, 40(4), 511–517. https://doi.org/10.1016/j.compositesa.2009.01.013.

Rana, A. K., Mandal, A., & Bandyopadhyay, S. (2003). Short jute fiber reinforced polypropylene composites: effect of compatibiliser, impact modifier and fiber loading. Compos Sci Technol, 63(6), 801–806. https://doi.org/10.1016/S0266-3538(02)00267-1.

Reddy, N. and Yang, Y.Q. (2005) Biofibers from agricultural byproducts for industrial applications. Trends in Biotechnology, 23, No.1.

Rees, H., Brown, P., & Grund, M. (1982). U.S. Patent No. 4,330,257. Washington, DC: U.S. Patent and Trademark Office.

Rezaur Rahman, M., Hasan, M., MonimulHuque, M., & Nazrul Islam, M. (2010). Physico-mechanical properties of jute fiber reinforced polypropylene composites. J Reinforced Plastics Composites, 29(3), 445–455. https://doi.org/10.1177/0731684408098008.

Ribeiro, B. (2005). Support vector machines for quality monitoring in a plastic injection molding process. IEEE Trans Syst Man Cyber C (Applications and Reviews), 35(3), 401–410. https://doi.org/10.1109/TSMCC.2004.843228.

Roger, A. J. (1954). U.S. Patent No. 2,689,978. Washington, DC: U.S.

Rokbi, M., Osmani, H., Imad, A., & Benseddiq, N. (2011). Effect of chemical treatment on flexure properties of natural fiber-reinforced polyester composite. procedia Engineering, 10(0), 2092-2097, DOI: https://doi.org/10.1016/j.proeng.2011.04.346.

Rozman, H. D., Tan, K. W., Kumar, R. N., Abubakar, A., Ishak, Z. M., & Ismail, H. (2000). The effect of lignin as a compatibilizer on the physical properties of coconut fiber–polypropylene composites. Eur Polym J, 36(7), 1483–1494. https://doi.org/10.1016/S0014-3057(99)00200-1.

Sadeghi, B. H. M. (2000). A BP-neural network predictor model for plastic injection molding process. J Mater Process Technol, 103(3), 411–416. https://doi.org/10.1016/S0924-0136(00)00498-2.

Samouh, Z., Molnar, K., Boussu, F., Cherkaoui, O., & El Moznine, R. (2019). Mechanical and thermal characterization of sisal fiber reinforced polylactic acid composites. Polymers Adv Technol, 30(3), 529–537. https://doi.org/10.1002/pat.4488.

Sanadi, A. R., Calufield, D. F., & Rowell, R. M. (1994). Reinforcing polypropylene with natural fibers. Plastics Eng (USA), 50(4), 27–28.

Sanadi, A. R., Caulfield, D. F., Jacobson, R. E., & Rowell, R. M. (1995). Renewable agricultural fibers as reinforcing fillers in plastics: mechanical properties of kenaf fiber-polypropylene composites. Industr Eng Chem Res, 34(5), 1889–1896. https://doi.org/10.1021/ie00044a041.

Sanjay, M. R., Arpitha, G. R., Naik, L. L., Gopalakrishna, K., & Yogesha, B. (2016). Applications of natural fibers and its composites: an overview. Nat Res, 7(3), 108–114. https://doi.org/10.4236/nr.2016.73011.

Sarasini, F., Tirillo, J., Puglia, D., Kenny, J. M., Dominici, F., Santulli, C., … De Santis, R. (2015). Effect of different lignocellulosic fibres on poly (ε-caprolactone)-based composites for potential applications in orthotics. RSC Adv, 5(30), 23798–23809. https://doi.org/10.1039/C5RA00832H.

Sarikaya, E., Çallioğlu, H., & Demirel, H. (2019). Production of epoxy composites reinforced by different natural fibers and their mechanical properties. Compos Part B Eng, 167, 461–466. https://doi.org/10.1016/j.compositesb.2019.03.020.

Satyanarayana, K. G., Sukumaran, K., Mukherjee, P. S., Pavithran, C., & Pillai, S. G. K. (1990). Natural fibre-polymer composites. Cement Concrete Composites, 12(2), 117–136. https://doi.org/10.1016/0958-9465(90)90049-4.

Schad, R. D. (1984). U.S. Patent No. 4,444,711. Washington, DC: U.S.

Schad, R. D. (1986). U.S. Patent No. 4,588,367. Washington, DC: U.S.

Schad, R. D., & Pocock, J. (1989). U.S. Patent No. 4,836,767. Washington, DC: U.S.

Schift, H., David, C., Gabriel, M., Gobrecht, J., Heyderman, L. J., Kaiser, W., … Scandella, L. (2000). Nanoreplication in polymers using hot embossing and injection molding. Microelectronic Eng, 53(1-4), 171–174. https://doi.org/10.1016/S0167-9317(00)00289-6.

Schmidt, H. (1994). U.S. Patent No. 5,360,333. Washington, DC: U.S..

Schut, J. (2002a). Why long-glass molders are compounding in-line. Plastics Technol, 48(4), 52–59.

Schut, J. H. (2002b). Long-glass leader: how faurecia helped put TP composites in the driver’s seat. Plastics Technol, 48(8), 44–48.

Schut, J. H. (2003). Long-fiber thermoplastics: extend their reach. Plastics Technol, 49(4), 56–61.

SemlaliAouraghHassani, F. Z., Ouarhim, W., Zari, N., Bensalah, M. O., Rodrigue, D., Bouhfid, R., & Qaiss, A. E. K. (2019). Injection molding of short coir fiber polypropylene biocomposites: prediction of the mold filling phase. Polym Compos, 40(10), 4042–4055. https://doi.org/10.1002/pc.25265.

Shah, N., Fehrenbach, J., & Ulven, C. A. (2019). Hybridization of hemp fiber and recycled-carbon fiber in polypropylene composites. Sustainability, 11(11), 3163. https://doi.org/10.3390/su11113163.

Shao, M. W., Huang, J. J., Chen, Y. X., & Hwang, S. S. (2019). Synthesis and characterization of the microcellular injection molded PA6/flax and the PA6/graphene nanocomposites. In IOP Conference Series: Materials Science and Engineering (Vol. 542, No. 1, p. 012067). Xiamen: IOP Publishing.

Shibata, M., Ozawa, K., Teramoto, N., Yosomiya, R., & Takeishi, H. (2003). Biocomposites made from short abaca fiber and biodegradable polyesters. Macromol Mat Eng, 288(1), 35–43. https://doi.org/10.1002/mame.200290031.

Shoichi, T. (1968). U.S. Patent No. 3,417,433. Washington, DC: U.S.

Shon, K., & White, J. L. (1999). A comparative study of fiber breakage in compounding glass fiber-reinforced thermoplastics in a buss kneader, modular co-rotating and counter-rotating twin screw extruders. Polymer Eng Sci, 39(9), 1757–1768. https://doi.org/10.1002/pen.11570.

Singh, H., Singh, J. I. P., Singh, S., Dhawan, V., & Tiwari, S. K. (2018). A brief review of jute fibre and its composites. Mat Today Proc, 5(14), 28427–28437.

Singh, S., & Mohanty, A. K. (2007). Wood fiber reinforced bacterial bioplastic composites: fabrication and performance evaluation. Compos Sci Technol, 67(9), 1753–1763. https://doi.org/10.1016/j.compscitech.2006.11.009.

Sinha, A. K., Bhattacharya, S., & Narang, H. K. (2020). Abaca fibre reinforced polymer composites: a review. J Mater Sci, 56(7), 4569–4587.

Sood, M., & Dwivedi, G. (2018). Effect of fiber treatment on flexural properties of natural fiber reinforced composites: a review. Egypt J Petroleum, 27(4), 775–783. https://doi.org/10.1016/j.ejpe.2017.11.005.

Stark, N. M., & Rowlands, R. E. (2003). Effects of wood fiber characteristics on mechanical properties of wood/polypropylene composites. Wood and fiber science. Vol. 35, no. 2 (2003): Pages 167-174.

Subasinghe, A. D. L., Das, R., & Bhattacharyya, D. (2015). Fiber dispersion during compounding/injection molding of PP/kenaf composites: flammability and mechanical properties. Mat Design, 86, 500–507. https://doi.org/10.1016/j.matdes.2015.07.126.

Sun, Z., & Mingming, W. (2019). Effects of sol-gel modification on the interfacial and mechanical properties of sisal fiber reinforced polypropylene composites. Ind Crop Prod, 137, 89–97. https://doi.org/10.1016/j.indcrop.2019.05.021.

Sun, Z. Y., Han, H. S., & Dai, G. C. (2010). Mechanical properties of injection-molded natural fiber-reinforced polypropylene composites: formulation and compounding processes. J Reinforced Plastics Composites, 29(5), 637–650. https://doi.org/10.1177/0731684408100264.

Sykacek, E., Hrabalova, M., Frech, H., & Mundigler, N. (2009). Extrusion of five biopolymers reinforced with increasing wood flour concentration on a production machine, injection moulding and mechanical performance. Compos A: Appl Sci Manuf, 40(8), 1272–1282. https://doi.org/10.1016/j.compositesa.2009.05.023.

Tamakuwala, V. R. (2020). Manufacturing of fiber reinforced polymer by using VARTM process: a review. Materials Today: Proceedings.

Tavares, T. D., Antunes, J. C., Ferreira, F., & Felgueiras, H. P. (2020). Biofunctionalization of natural fiber-reinforced biocomposites for biomedical applications. Biomolecules, 10(1), 148. https://doi.org/10.3390/biom10010148.

Thiriez, A., & Gutowski, T. (2006). An environmental analysis of injection molding. In Proceedings of the 2006 IEEE International Symposium on Electronics and the Environment, (pp. 195-200). IEEE.

Tholibon, D., Tharazi, I., Sulong, A. B., Muhamad, N., Ismial, N. F., Radzi, M. K. F. M., … Hui, D. (2019). Kenaf fiber composites: a review on synthetic and biodegradable polymer matrix. J Kejuruter, 31, 65–76.

Thomason, J. L. (2002). The influence of fibre length and concentration on the properties of glass fibre reinforced polypropylene: 5. Injection moulded long and short fibre PP. Compos A: Appl Sci Manuf, 33(12), 1641–1652. https://doi.org/10.1016/S1359-835X(02)00179-3.

Thomason, J. L. (2010). Dependence of interfacial strength on the anisotropic fiber properties of jute reinforced composites. Polym Compos, 31(9), 1525–1534. https://doi.org/10.1002/pc.20939.

Thwe, M. M., & Liao, K. (2003). Durability of bamboo-glass fiber reinforced polymer matrix hybrid composites. Compos Sci Technol, 63(3-4), 375–387. https://doi.org/10.1016/S0266-3538(02)00225-7.

Tokoro, R., Vu, D. M., Okubo, K., Tanaka, T., Fujii, T., & Fujiura, T. (2008). How to improve mechanical properties of polylactic acid with bamboo fibers. J Mater Sci, 43(2), 775–787. https://doi.org/10.1007/s10853-007-1994-y.

Várdai, R., Lummerstorfer, T., Pretschuh, C., Jerabek, M., Gahleitner, M., Bartos, A., … Pukánszky, B. (2021). Improvement of the impact resistance of natural fiber–reinforced polypropylene composites through hybridization. Polymers Adv Technol, 32(6), 2499–2507. https://doi.org/10.1002/pat.5280.

Vedrtnam, A., Kumar, S., & Chaturvedi, S. (2019). Experimental study on mechanical behavior, biodegradability, and resistance to natural weathering and ultraviolet radiation of wood-plastic composites. Compos Part B Eng, 176, 107282. https://doi.org/10.1016/j.compositesb.2019.107282.

Vinod, B., & Anandajothi, M. (2020). Mechanical and tribological properties of abaca-roselle/cardanol formaldehyde hybrid composites. Mat Res Express, 6(12), 125363. https://doi.org/10.1088/2053-1591/ab66fa.

Wang, J. L. (2012). Application of composite materials on sports equipments. In Applied Mechanics and Materials (Vol. 155, pp. 903-906). Trans Tech Publications Ltd.

B. Wielage, T. Lampke, G. Marx, K. Nestler. and D. Starke, ’IhermochimicaActa, SS7, 169 (1999)

Wong, S. C., & Mai, Y. W. (1999). Essential fracture work of short fiber reinforced polymer blends. Polymer Eng Sci, 39(2), 356–364. https://doi.org/10.1002/pen.11422.

Xie, X. L., Li, R. K. Y., Tjong, S. C., & Mai, Y. W. (2002). Structural properties and mechanical behavior of injection molded composites of polypropylene and sisal fiber. Polym Compos, 23(3), 319–328. https://doi.org/10.1002/pc.10434.

Xu, H., Liu, C. Y., Chen, C., Hsiao, B. S., Zhong, G. J., & Li, Z. M. (2012). Easy alignment and effective nucleation activity of ramie fibers in injection-molded poly (lactic acid) biocomposites. Biopolymers, 97(10), 825–839. https://doi.org/10.1002/bip.22079.

Yan, X., Shen, H., Yu, L., & Hamada, H. (2017). Polypropylene–glass fiber/basalt fiber hybrid composites fabricated by direct fiber feeding injection molding process. J Appl Polym Sci, 134(44), 45472. https://doi.org/10.1002/app.45472.

Yang, Y., Ota, T., Morii, T., & Hamada, H. (2011). Mechanical property and hydrothermal aging of injection molded jute/polypropylene composites. J Mater Sci, 46(8), 2678–2684. https://doi.org/10.1007/s10853-010-5134-8.

Yap, S. Y., Sreekantan, S., Hassan, M., Sudesh, K., & Ong, M. T. (2021). Characterization and biodegradability of rice husk-filled polymer composites. Polymers, 13(1), 104. https://doi.org/10.3390/polym13010104.

Yu, S., Hwang, J. Y., & Hong, S. H. (2020). 3D microstructural characterization and mechanical properties determination of short basalt fiber-reinforced polyamide 6, 6 composites. Compos Part B Eng, 187, 107839. https://doi.org/10.1016/j.compositesb.2020.107839.

Yussuf, A. A., Massoumi, I., & Hassan, A. (2010). Comparison of polylactic acid/kenaf and polylactic acid/rise husk composites: the influence of the natural fibers on the mechanical, thermal and biodegradability properties. J Polym Environ, 18(3), 422–429. https://doi.org/10.1007/s10924-010-0185-0.

Zhang, J., Park, C. B., Rizvi, G. M., Huang, H., & Guo, Q. (2009). Investigation on the uniformity of high-density polyethylene/wood fiber composites in a twin-screw extruder. J Appl Polym Sci, 113(4), 2081–2089. https://doi.org/10.1002/app.29991.

Zhang, Y., Xi, D., Yang, H., Tao, F., & Wang, Z. (2019). Cloud manufacturing based service encapsulation and optimal configuration method for injection molding machine. J Intell Manuf, 30(7), 2681–2699. https://doi.org/10.1007/s10845-017-1322-6.

Zhang, Y., Yu, C., Chu, P. K., Lv, F., Zhang, C., Ji, J., … Wang, H. (2012). Mechanical and thermal properties of basalt fiber reinforced poly (butylene succinate) composites. Mater Chem Phys, 133(2-3), 845–849. https://doi.org/10.1016/j.matchemphys.2012.01.105.