Injection-free multiwavelength electroluminescence devices based on monolayer semiconductors driven by an alternating field

Science advances - Tập 8 Số 5 - 2022
Jiabin Feng1,2,3, Yongzhuo Li1,2,3, Jianxing Zhang1,2,3, Yuqian Tang1,2,3, Hao Sun1,2,3, Lin Gan1,2,3, Cun‐Zheng Ning1,2,3,4
1Beijing National Research Center for Information Science and Technology, 100084 Beijing, China.
2Department of Electronic Engineering, Tsinghua University, 100084 Beijing, China
3Frontier Science Center for Quantum Information, 100084 Beijing, China.
4School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287, USA

Tóm tắt

Two-dimensional (2D) semiconductors have emerged as promising candidates for various optoelectronic devices especially electroluminescent (EL) devices. However, progress has been hampered by many challenges including metal contacts and injection, transport, and confinement of carriers due to small sizes of materials and the lack of proper double heterostructures. Here, we propose and demonstrate an alternative approach to conventional current injection devices. We take advantage of large exciton binding energies in 2D materials using impact generation of excitons through an alternating electric field, without requiring metal contacts to 2D materials. The conversion efficiency, defined as the ratio of the emitted photons to the preexisting carriers, can reach 16% at room temperature. In addition, we demonstrate the first multiwavelength 2D EL device, simultaneously operating at three wavelengths from red to near-infrared. Our approach provides an alternative to conventional current-based devices and could unleash the great potential of 2D materials for EL devices.

Từ khóa


Tài liệu tham khảo

10.1103/PhysRevLett.105.136805

10.1021/nl903868w

10.1038/nnano.2015.67

10.1038/nnano.2015.75

10.1038/nnano.2015.79

10.1038/nnano.2015.60

10.1038/nnano.2014.25

10.1038/nnano.2014.14

10.1038/nnano.2014.26

10.1021/nl400516a

10.1038/nmat4205

10.1038/s41467-018-03218-8

10.1021/acs.nanolett.5b03740

10.1021/acs.nanolett.7b02617

10.1038/nnano.2017.209

10.1126/science.1251329

10.1021/acsami.8b14076

10.1002/adfm.201907941

10.1038/nature14290

10.1038/nphoton.2015.197

10.1038/nnano.2017.128

10.1038/s41586-019-1779-x

10.1126/sciadv.aav4506

10.1117/1.AP.1.1.014002

10.1038/s41377-020-0278-z

10.1002/lpor.201800015

10.1021/acsnano.6b02879

10.1021/acs.nanolett.7b01536

10.1126/science.aab3175

10.1038/nmat4452

10.1002/smll.201202919

10.1002/smll.201102654

10.1088/2053-1583/1/1/011002

10.1126/science.1119177

10.1103/PhysRevB.74.121410

10.1103/PhysRevB.6.3076

10.1002/adma.201701304

10.1021/acs.nanolett.9b00959

10.1021/nl900898t

10.1063/1.371844

10.1063/1.4720377

10.1002/adom.201801154

10.1038/nnano.2015.149

10.1063/1.2138792

J. D. Jackson Classical Electrodynamics Third Edition (Wiley ed. 3 1998).

10.1038/s41467-018-03864-y

10.1103/PhysRevB.93.081407

10.1021/acs.nanolett.6b00536

10.1063/1.1723695

10.1016/j.matlet.2019.06.072

10.1039/C5CS00517E