Injection compression molding of transmission-type Fano resonance biochips for multiplex sensing applications

Applied Materials Today - Tập 16 - Trang 72-82 - 2019
Kuang-Li Lee1, Meng-Lin You1, Xu Shi2, Yi-Ru Li1, Kosei Ueno2, Hiroaki Misawa2,3, Pei-Kuen Wei1,4,5
1Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
2Research Institute for Electronic Science, Hokkaido University, N21, W10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
3Center for Emergent Functional Matter Science, National Chiao Tung University, Hsinchu 30010, Taiwan
4Institute of Optoelectronic Sciences, National Taiwan Ocean University, Keelung, 20224 Taiwan
5Institute of Biophotonics, National Yang-Ming University, Taipei 11221, Taiwan

Tài liệu tham khảo

Ebbesen, 1998, Extraordinary optical transmission through sub-wavelength hole arrays, Nature, 391, 667, 10.1038/35570 Brolo, 2004, Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films, Langmuir, 20, 4813, 10.1021/la0493621 Raether, 1988 Homola, 1999, Surface plasmon resonance sensors: review, Sens. Actuators B, 54, 3, 10.1016/S0925-4005(98)00321-9 Maier, 2007, Surface-plasmon-polariton-based sensors Homola, 2008, Surface plasmon resonance sensors for detection of chemical and biological species, Chem. Rev., 108, 462, 10.1021/cr068107d Anker, 2008, Biosensing with plasmonic nanosensors, Nat. Mater., 7, 442, 10.1038/nmat2162 Lee, 2007, Sensitive biosensor array by using surface plasmon resonance on metallic nanoslits, J. Biomed. Opt., 12, 044023, 10.1117/1.2772296 Hao, 2008, Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance, Nano Lett., 8, 3983, 10.1021/nl802509r Mirin, 2009, Fano resonances in plasmonic nanoparticle aggregates, J. Phys. Chem. A, 113, 4028, 10.1021/jp810411q Shen, 2013, Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit, Nat. Commun., 4, 2381, 10.1038/ncomms3381 Lee, 2015, Ultrasensitive biosensors using enhanced Fano resonances in capped gold nanoslit arrays, Sci. Rep., 5, 8547, 10.1038/srep08547 Stewart, 2006, Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals, Proc. Natl. Acad. Sci. U.S.A., 103, 17143, 10.1073/pnas.0606216103 Lee, 2010, Enhancing surface plasmon detection using ultrasmall nanoslits and a multispectral integration method, Small, 6, 1900, 10.1002/smll.201000598 Lee, 2012, Improving surface plasmon detection in gold nanostructures using a multi-polarization spectral integration method, Adv. Mater., 24, OP253, 10.1002/adma.201202194 Nagpal, 2009, Ultrasmooth patterned metals for plasmonics and metamaterials, Science, 325, 594, 10.1126/science.1174655 Lee, 2012, Enhancing surface plasmon detection using template-stripped gold nanoslit arrays on plastic films, ACS Nano, 6, 2931, 10.1021/nn3001142 Luk‘yanchuk, 2010, The Fano resonance in plasmonic nanostructures and metamaterials, Nat. Mater., 9, 707, 10.1038/nmat2810 Gao, 2010, Using the angle-dependent resonances of molded plasmonic crystals to improve the sensitivities of biosensors, Nano Lett., 10, 2549, 10.1021/nl101165r Lee, 2016, Enhancing the surface sensitivity of metallic nanostructures using oblique-angle-induced Fano resonances, Sci. Rep., 6, 33126, 10.1038/srep33126 Couture, 2016, 96-well plasmonic sensing with nanohole arrays, ACS Sens., 1, 287, 10.1021/acssensors.5b00280 Vaisocherova, 2009, Comparative study of SPR and ELISA methods based on analysis of CD166/ALCAM levels in cancer and control human sera, Biosens. Bioelectron., 24, 2143, 10.1016/j.bios.2008.11.015 Campbell, 2009, Comparison of ELISA and SPR biosensor technology for the detection of paralytic shellfish poisoning toxins, J. Chromatogr. B: Anal. Technol. Biomed. Life Sci., 877, 4079, 10.1016/j.jchromb.2009.10.023 Breault-Turcot, 2015, Single chip SPR and fluorescent ELISA assay of prostate specific antigen, Lab Chip, 15, 4433, 10.1039/C5LC01045D Skinner, 2008, Large-area subwavelength aperture arrays fabricated using nanoimprint lithography, IEEE Trans. Nanotechnol., 7, 527, 10.1109/TNANO.2008.2002648 Lee, 2017, Low-cost and rapid fabrication of metallic nanostructures for sensitive biosensors using hot-embossing and dielectric-heating nanoimprint methods, Sensors, 17, 1548, 10.3390/s17071548 Menezes, 2010, Large-area fabrication of periodic arrays of nanoholes in metal films and their application in biosensing and plasmonic-enhanced photovoltaics, Adv. Funct. Mater., 20, 3918, 10.1002/adfm.201001262 Lee, 2009, Self-assembled plasmonic nanohole arrays, Langmuir, 25, 13685, 10.1021/la9020614 Aksu, 2011, Flexible plasmonics on unconventional and nonplanar substrates, Adv. Mater., 23, 4422, 10.1002/adma.201102430 Im, 2011, Template-stripped smooth Ag nanohole arrays with silica shells for surface plasmon resonance biosensing, ACS Nano, 5, 6244, 10.1021/nn202013v Lindquist, 2011, Monolithic integration of continuously tunable plasmonic nanostructures, Nano Lett., 11, 3526, 10.1021/nl2005737 Nagato, 2011, Injection compression molding of high-aspect-ratio nanostructures, J. Vac. Sci. Technol. B, 29, 06FG10, 10.1116/1.3662405 Nagato, 2014, Injection compression molding of replica molds for nanoimprint lithography, Polymers, 6, 604, 10.3390/polym6030604 Kaplan, 2009, Tuning optical discs for plasmonic applications, Plasmonics, 4, 237, 10.1007/s11468-009-9099-x Dou, 2012, High surface plasmon resonance sensitivity enabled by optical disks, Opt. Lett., 37, 3681, 10.1364/OL.37.003681 Lee, 2017, Highly sensitive aluminum-based biosensors using tailorable Fano resonances in capped nanostructures, Sci. Rep., 7, 44104, 10.1038/srep44104 Wei, 2002, Optical near field in nanometallic slits, Opt. Express, 10, 1418, 10.1364/OE.10.001418 Lee, 2011, Sensitive biosensors using Fano resonance in single gold nanoslit with periodic grooves, Opt. Express, 19, 24530, 10.1364/OE.19.024530 Gordon, 2006, Light in a subwavelength slit in a metal: propagation and reflection, Phys. Rev. B, 73, 153405, 10.1103/PhysRevB.73.153405 Fano, 1941, The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld's waves), J. Opt. Soc. Am., 31, 213, 10.1364/JOSA.31.000213 Miroshnichenko, 2010, Fano resonances in nanoscale structures, Rev. Mod. Phys., 82, 2257, 10.1103/RevModPhys.82.2257 Luk’yanchuk, 2010, The Fano resonance in plasmonic nanostructures and metamaterials, Nat. Mater., 9, 707, 10.1038/nmat2810 López-Muñoz, 2017, A label-free nanostructured plasmonic biosensor based on blue-ray discs with integrated microfluidics for sensitive biodetection, Biosens. Bioelectron., 96, 260, 10.1016/j.bios.2017.05.020 Lee, 2017, Enhancing surface sensitivity of nanostructure-based aluminum sensors using capped dielectric layers, ACS Omega, 2, 7461, 10.1021/acsomega.7b01349 Fleischmann, 1974, Raman spectra of pyridine adsorbed at a silver electrode, Chem. Phys. Lett., 26, 163, 10.1016/0009-2614(74)85388-1 Jeanmaire, 1977, Surface Raman spectroelectrochemistry, J. Electroanal. Chem., 84, 1, 10.1016/S0022-0728(77)80224-6 Albrecht, 1977, Anomalously intense Raman spectra of pyridine at a silver electrode, J. Am. Chem. Soc., 99, 5215, 10.1021/ja00457a071 Fana, 2011, A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry, Anal. Chim. Acta, 693, 7, 10.1016/j.aca.2011.03.002 Lee, 2018, Dual sensing arrays for surface plasmon resonance (SPR) and surface enhanced Raman scattering (SERS) based on nanowire/nanorod hybrid nanostructures, Adv. Mater. Interfaces, 5, 1801064, 10.1002/admi.201801064