Initial phase wall conditioning in KSTAR

Nuclear Fusion - Tập 51 Số 10 - Trang 103027 - 2011
Suk‐Ho Hong1, Kwang Pyo Kim2, Sung Woo Kim2, Jong-Ho Sun1, Dong-Su Lee2, Hyun-Jong Woo1, Sang‐Yong Tom Lee3, Sanghwa Lee3, Eunkyung Park1, Sang‐Joon Park1, Kyung-Min Kim2, KunSu Lee2, Sun-Ho Kim4, Jongsu Kim2, Sun-Jung Wang4, Jaemin Park2, Woong-Chae Kim2, Hak-Kun Kim2, Kaprai Park2, H.L. Yang2, Y.K. Oh2, J.G. Kwak2, Hoon-Kyun Na2, Jaeyong Kim3, Kyu‐Sun Chung1
1Department of Electrical Engineering, Hanyang University, Seoul, 133-791, Korea
2National Fusion Research Institute, 113 Gwahangno, Yusung-Gu, Daejeon 305-333, Korea
3Department of Physics, Hanyang University, Seoul, 133-791, Korea
4Korea Atomic Energy Research Institute, 1045 Daeduk-Daero, Yuseong-gu, Daejeon, Korea

Tóm tắt

The initial phase wall conditioning in KSTAR is depicted. The KSTAR wall conditioning procedure consists of vessel baking, glow discharge cleaning (GDC), ICRH wall conditioning (ICWC) and boronization (Bz). Vessel baking is performed for the initial vacuum conditioning in order to remove various kinds of impurities including H2O, carbon and oxygen and for the plasma operation. The total outgassing rates after vessel baking in three successive KSTAR campaigns are compared. GDC is regularly performed as a standard wall cleaning procedure. Another cleaning technique is ICWC, which is useful for inter-shot wall conditioning under a strong magnetic field. In order to optimize the operation time and removal efficiency of ICWC, a parameter scan is performed. Bz is a standard technique to remove oxygen impurity from a vacuum vessel. KSTAR has used carborane powder which is a non-toxic boron-containing material. The KSTAR Bz has been successfully performed through two campaigns: water and oxygen levels in the vacuum vessel are reduced significantly. As a result, KSTAR has achieved its first L–H mode transition, although the input power was marginal for the L–H transition threshold. The characteristics of boron-containing thin films deposited for boronization are investigated.

Từ khóa


Tài liệu tham khảo

1999, J. Plasma Fusion Res., 75, 263, 10.1585/jspf.75.263

2000, Initial wall conditioning and impurity control techniques in NSTX, ECA, 24B, 1605

2000

1987, J. Nucl. Mater., 145–147, 770, 10.1016/0022-3115(87)90443-0

1980, J. Nucl. Mater., 93–94, 61, 10.1016/0022-3115(80)90303-7

1983, J. Vac. Sci. Technol., 1, 1861, 10.1116/1.572229

1996, Plasma Phys. Control. Fusion, 38, 1503, 10.1088/0741-3335/38/9/001

2001, Nucl. Fusion, 41, 1967, 10.1088/0029-5515/41/12/218

2003, J. Nucl. Mater., 313–316, 149, 10.1016/S0022-3115(02)01402-2

1995, J. Nucl. Mater., 220–222, 730, 10.1016/0022-3115(94)00575-3

1999, Nucl. Fusion, 39, 973, 10.1088/0029-5515/39/8/302

2009, J. Nucl. Mater., 390–391, 864, 10.1016/j.jnucmat.2009.01.226

2002, ECA, 26B, P-5.078

2002, Vacuum, 67, 393, 10.1016/S0042-207X(02)00211-7

2003, J. Nucl. Mater., 313–316, 214, 10.1016/S0022-3115(02)01482-4

1993, Phys. Rev. Lett., 71, 549, 10.1103/PhysRevLett.71.549

2001, J. Nucl. Mater., 290–293, 1171, 10.1016/S0022-3115(00)00552-3

2006, Wall condition and density control in the HL-2A tokamak, ECA, 30I, P-2.172

2008, ECA, 32D, P-4.004

2010, Rev. Sci. Instrum., 81, 10E117, 10.1063/1.3494381

1997, J. Nucl. Mater., 241–243, 655, 10.1016/S0022-3115(97)80117-1

1998, Nucl. Fusion, 38, 1137, 10.1088/0029-5515/38/8/302

1989, J. Nucl. Mater., 162–164, 713, 10.1016/0022-3115(89)90352-8

1990, J. Nucl. Mater., 176–177, 486, 10.1016/0022-3115(90)90094-4

1992, J. Nucl. Mater., 196–198, 587, 10.1016/S0022-3115(06)80104-2

2005, Plasma Phys. Control. Fusion, 47, 197, 10.1088/0741-3335/47/2/001

2011, Recent results on ion cyclotron wall conditioning in mid and large size tokamaks, J. Nucl. Mater.

2009, AIP Conf. Proc., 1187, 173, 10.1063/1.3273721

2009, J. Nucl. Mater., 390–391, 979, 10.1016/j.jnucmat.2009.01.252

2008, J. Nucl. Mater., 376, 207, 10.1016/j.jnucmat.2008.02.090

2011, Improvement of initial vacuum condition along 2008–2010 KSTAR campaign by vessel baking, Fusion Eng. Des.

2009, Fusion Eng. Des., 84, 1026, 10.1016/j.fusengdes.2009.03.002

2003, Nucl. Fusion, 43, 805, 10.1088/0029-5515/43/9/302

2010, Fusion Eng. Des., 85, 946, 10.1016/j.fusengdes.2010.04.064

1999, J. Korean Vac. Soc., 8, 497

2011, First boronization in KSTAR: experiences on carborane, J. Nucl. Mater.

2004

1999, J. Appl. Phys., 86, 3988, 10.1063/1.371318

1986

1992

2006, J. Nucl. Mater., 350, 9, 10.1016/j.jnucmat.2005.11.006