Initial cyclostratigraphy of the middle Nama Group (Schwarzrand Subgroup) in southern Namibia
Tài liệu tham khảo
Blanco, 2011, Provenance and paleogeography of the Nama Group (Ediacaran to early Paleozoic, Namibia): Petrography, geochemistry and U-Pb detrital zircon geochronology, Precamb. Res., 187, 15, 10.1016/j.precamres.2011.02.002
Boulila, 2011, On the origin of Cenozoic and Mesozoic ‘third-order’ eustatic sequences, Earth Sci. Rev., 109, 94, 10.1016/j.earscirev.2011.09.003
Boulila, 2018, Towards a robust and consistent middle Eocene astronomical timescale, Earth Planet. Sci. Let., 486, 94, 10.1016/j.epsl.2018.01.003
Bouougri, 2011, Sedimentology and palaeoecology of Ernietta-bearing Ediacaran deposits in southern Namibia: implications for infaunal vendobiont communities, Adv. Stromat. Geobiol., 473–506, 10.1007/978-3-642-10415-2_29
Bowring, 2007, Geochronologic constraints on the chronostratigraphic framework of the Neoproterozoic Huqf Supergroup, Sultanate of Oman. Am. J. Sci., 307, 1097, 10.2475/10.2007.01
Bowyer, 2020, Regional nutrient decrease drove redox stabilization and metazoan diversification in the late Ediacaran Nama Group, Namibia, Sci. Rep., 10, 2240, 10.1038/s41598-020-59335-2
Bowyer, 2022, Calibrating the temporal and spatial dynamics of the Ediacaran-Cambrian radiation of animals, Earth Sci. Rev., 225, 10.1016/j.earscirev.2021.103913
Brasier, 1994, Decision on the Precambrian-Cambrian boundary stratotype, Episodes, 17, 3, 10.18814/epiiugs/1994/v17i1.2/002
Burns, 1993, Carbon isotope record of the latest Proterozoic from Oman, Eclogae Geol. Helvetiae, 86, 595
Catuneanu, 1997, Interplay of static loads and subduction dynamics in foreland basins: Reciprocal stratigraphies and the ‘missing’ peripheral bulge, Geol., 25, 1087, 10.1130/0091-7613(1997)025<1087:IOSLAS>2.3.CO;2
Charbonnier, 2018, Obliquity pacing of the hydrological cycle during the Oceanic Anoxic Event 2, Earth Planet. Sci. Lett., 499, 266, 10.1016/j.epsl.2018.07.029
Chen, 2020, Precambr. Res., 334
Cherry, 2022, A diverse Ediacara assemblage survived under low-oxygen conditions, Nat. Commun., 13, 7306, 10.1038/s41467-022-35012-y
Chumakov, 2011, Late Proterozoic African glacial era, Stratigr. Geol. Correl., 19, 1, 10.1134/S0869593810061012
Cribb, 2019, Increase in metazoan ecosystem engineering prior to the Ediacaran-Cambrian boundary in the Nama Group, Namibia, R. Soc. Open Sci., 6, 10.1098/rsos.190548
Daher, H., Arbic, B.K., Williams, J.G., Ansong, J.K., Boggs, D.H., Müller, M., Schindelegger, M., Austermann, J., Cornuelle, B.D., Crawford, E.B., Fringer, O.B., Lau, H.C.P., Lock, S.J., Maloof, A.C., Menemenlis, D., Mitrovica, J.X., Green, J.A.M., Huber, M., 2021. Long-term Earth-Moon evolution with high-level orbit and ocean tide models. J. Geophys. Res. Plan. 126(12), e2021JE006875.
Darroch, 2015, Biotic replacement and mass extinction of the Ediacara biota, Proc. R. Soc. B, 282, 20151003, 10.1098/rspb.2015.1003
Darroch, 2021, The trace fossil record of the Nama Group, Namibia: exploring the terminal Ediacaran roots of the Cambrian explosion, Earth Sci. Rev., 212, 10.1016/j.earscirev.2020.103435
Davies, 2020, Assessing the impact of aquifer-eustasy on short-term Cretaceous sea-level, Cretac. Res., 112, 10.1016/j.cretres.2020.104445
Davydov, 2010, High-precision U-Pb zircon age calibration of the global Carboniferous time scale and Milankovitch band cyclicity in the Donets Basin, eastern Ukraine, Geochem. Geophys. Geosyst., 11, Q0AA04, 10.1029/2009GC002736
Erwin, 2011, The Cambrian conundrum: Early divergence and later ecological success in the early history of animals, Sci., 334, 1091, 10.1126/science.1206375
Evans, 2022, Environmental drivers of the first major animal extinction across the Ediacaran White Sea-Nama transition, Proc. Natl. Acad. Sci., 119, 10.1073/pnas.2207475119
Fang, 2020, Cyclostratigraphy of the global stratotype section and point (GSSP) of the basal Guzhangian Stage of the Cambrian Period, Palaeogeogr. Palaeoclimatol. Palaeoecol., 540, 10.1016/j.palaeo.2019.109530
Farhat, 2022, The resonant tidal evolution of the Earth-Moon distance, A & A, 665, L1, 10.1051/0004-6361/202243445
García, 1996, Sequences, cycles and hiatuses in the Upper Albian-Cenomanian of the Iberian Ranges (Spain): a cyclostratigraphic approach, Sedimentary Geol., 103, 175, 10.1016/0037-0738(95)00109-3
Germs, 1983, Implications of a sedimentary facies and depositional environmental analysis of the Nama Group in south west Africa/Namibia, vol. 11, 89
Germs, 2012, Nature and extent of a late Ediacaran (ca. 547 Ma) glacigenic erosion surface in southern Africa, S. Afr. J. Geol., 115, 91, 10.2113/gssajg.115.91
Germs, 1991, The foreland basin of the Damara and Gariep orogens in Namaqualand and southern Namibia: stratigraphic correlations and basin dynamics, S. Afr. J. Geol., 94, 159
Germs, 2009, Syn- to late-orogenic sedimentary basins of southwestern Africa, vol. 16, 183
Gong, 2020, Astrochronology of the Ediacaran Shuram carbon isotope excursion, Oman. Earth Planet. Sci. Lett., 547
Gray, D.R., Foster, D.A., Meert, J.G., Goscombe, B.D., Armstrong, R., Trouw, R.A.J., Passchier, C.W., 2008. A Damara orogen perspective on the assembly of southwestern Gondwana. In: Pankhurst, R.J., Trouw, R.A.J., Brito Neves, B.B., de Wit, M.J. (Eds.), West Gondwana: Pre-Cenozoic Correlations Across the South Atlantic Region. Geological Society, London, Special Publications, vol. 294, pp. 257–278. 10.1144/SP294.14.
Gresse, 1993, The Nama foreland basin: sedimentation, major unconformity bounded sequences and multisided active margin advance, Precambr. Res., 63, 247, 10.1016/0301-9268(93)90036-2
Grotzinger, 1995, Biostratigraphic and geochronologic constraints on early animal evolution, Sci., 270, 598, 10.1126/science.270.5236.598
Grotzinger, 2011, Enigmatic origin of the largest-known carbon isotope excursion in Earth’s history, Nat., 4, 285
Hall, 2013, Stratigraphy, palaeontology and geochemistry of the late Neoproterozoic Aar Member, southwest Namibia: reflecting environmental controls on Ediacara fossil preservation during the terminal Proterozoic in African Gondwana, Precambr. Res., 238, 214, 10.1016/j.precamres.2013.09.009
Haslett, 2008, A simple monotone process with application to radiocarbon-dated depth chronologies, J. R. Stat. Soc. Ser. C. Appl. Stat., 57, 399, 10.1111/j.1467-9876.2008.00623.x
Hinnov, 2013, Cyclostratigraphy and its revolutionizing applications in the earth and planetary sciences, Geol. Soc. Am. Bull., 125, 1703, 10.1130/B30934.1
Huang, 2021, Organic carbon burial is paced by a ∼173-ka obliquity cycle in the middle to high latitudes, Sci. Adv., 7, eabf9489, 10.1126/sciadv.abf9489
Imbrie, 1980, Modeling the climatic response to orbital variations, Sci., 207, 943, 10.1126/science.207.4434.943
Kaufman, 1991, Isotopic compositions of carbonates and organic carbon from upper Proterozoic successions in Namibia: stratigraphic variation and the effects of diagenesis and metamorphism, Precambr. Res., 49, 301, 10.1016/0301-9268(91)90039-D
Lantink, M.L., Davies, J.H.F.L., Ovtcharova, M., Hilgen, F.J., 2022. Milankovitch cycles in banded iron formations constrain the Earth-Moon system 2.46 billion years ago. Proc. Natl. Acad. Sci. 119(40), e 2117146119. 10.1073/pnas.2117146119.
Lantink, 2023, Precessional pacing of early Proterozoic redox cycles, Earth Planet. Sci. Lett., 610, 10.1016/j.epsl.2023.118117
Lantink, M.L., 2022. Milankovitch cycles in banded iron formations: An early Paleoproterozoic window into Earth’s climate and Solar System evolution. Utrecht Studies in Earth Sciences 257 (Dissertation). 10.33540/1411.
Laskar, 1993, Stabilization of the Earth’s obliquity by the Moon, Nature, 361, 615, 10.1038/361615a0
Laskar, 2011, La2010: A new orbital solution for the long-term motion of the Earth, A & A, 532, A89, 10.1051/0004-6361/201116836
Levrard, 2003, Climate friction and the Earth’s obliquity, Geophys. J. Int., 154, 970, 10.1046/j.1365-246X.2003.02021.x
Li, 2013, Neoproterozoic glaciations in a revised global palaeogeography from the breakup of Rodinia to the assembly of Gondwanaland, Sed. Geol., 294, 219, 10.1016/j.sedgeo.2013.05.016
Li, 2020, The redox structure of Ediacaran and early Cambrian oceans and its controls, Sci. Bull., 65, 2141, 10.1016/j.scib.2020.09.023
Liebrand, 2016, Earth Planet. Sci. Lett., 450, 392, 10.1016/j.epsl.2016.06.007
Linnemann, 2019, New high-resolution age data from the Ediacaran-Cambrian boundary indicate rapid, ecologically driven onset of the Cambrian explosion, Terra Nova, 31, 49, 10.1111/ter.12368
Linnemann, 2022, An upper Ediacaran glacial period in Cadomia: the Granville tillite (Armorican Massif) – sedimentology, geochronology and provenance, Geol. Mag., 159, 999, 10.1017/S0016756821001011
Lisiecki, 2005, A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records, Paleoceanography, 20, PA1003, 10.1029/2004PA001071
Lu, 2019, Cyclic late Katian through Hirnantian glacioeustasy and its control of the development of the organic-rich Wufeng and Longmaxi shales, South China, Palaeogeogr. Palaeoclimatol. Palaeoecol., 526, 96, 10.1016/j.palaeo.2019.04.012
Maloney, 2020, Paleoenvironmental analysis of Ernietta-bearing Ediacaran deposits in southern Namibia, Palaeogeogr. Palaeoclimatol. Palaeoecol., 556, 10.1016/j.palaeo.2020.109884
Matthews, 2021, A chronostratigraphic framework for the rise of the Ediacaran macrobiota: new constraints from mistaken point ecological reverse, Newfoundland, GSA Bull., 133, 612, 10.1130/B35646.1
Meyers, 2018, Proterozoic Milankovitch cycles and the history of the solar system, Proc. Natl. Acad. Sci., 115, 6363, 10.1073/pnas.1717689115
Miller, 2005, The Phanerozoic record of global sea-level change, Sci., 310, 1293, 10.1126/science.1116412
Narbonne, 1997, The youngest Ediacaran fossils from southern Africa, J. Paleo., 71, 953, 10.1017/S0022336000035940
Naylor, 2007, Punctuated thrust deformation in the context of doubly vergent thrust wedges: Implications for the localization of uplift and exhumation, Geol., 35, 559, 10.1130/G23448A.1
Nelson, 2022, Pushing the boundary: a calibrated Ediacaran-Cambrian stratigraphic record from the Nama Group in northwestern Republic of South Africa, Earth Planet. Sci. Lett., 580, 10.1016/j.epsl.2022.117396
Olsen, 2019, Mapping solar system chaos with the geological orrery, Proc. Natl. Acad. Sci., 116, 10664, 10.1073/pnas.1813901116
Page, A.A., Zalasiewicz, J.A., Williams, M., Popov, L.E., 2007. Were transgressive black shales a negative feedback modulating glacioeustasy in Early Paleozoic Icehouse? In: Williams, M., Haywood, A.M., Gregory, F.J., Schmidt, D.N. (Eds.), Deep-time Perspectives on Climate Change: Marrying the Signal from Computer Models and Biological Proxies. The Micropalaeontological Society, Special Publications, the Geological Society, London, pp. 123–156.
Pu, 2016, Dodging snowballs: Geochronology of the Gaskiers glaciation and the first appearance of the Ediacaran biota, Geol., 44, 955, 10.1130/G38284.1
Ries, 2009, Superheavy pyrite (δ34Spyr > δ34SCAS) in the terminal Proterozoic Nama Group, southern Namibia: a consequence of low seawater sulfate at the dawn of animal life, Geology, 37, 743, 10.1130/G25775A.1
Rose, C., Prave, T., Baillie, I., Cantine, M., Kasemann, S., Macdonald, F., Mesli, M., Nduutepo, A., Pruss, S., Trindade, R., Zhu, M., 2023. Grinding through the Ediacaran-Cambrian Transition (EGU23-9523). EGU General Assembly 2023, Vienna, Austria. 10.5194/egusphere-egu23-9523.
Saylor, 2003, Sequence stratigraphy and carbonate-siliciclastic mixing in a terminal Proterozoic foreland basin, Urusis Formation, Nama Group, Namibia. J. Sediment. Res., 73, 264, 10.1306/082602730264
Saylor, 1995, Sequence stratigraphy and sedimentology of the Neoproterozoic Kuibis and Schwarzrand Subgroups (Nama Group), southwestern Namibia, Precambr. Res., 73, 153, 10.1016/0301-9268(94)00076-4
Saylor, 1998, A composite reference section for terminal Proterozoic strata of southern Namibia, J. Sediment. Res., 68, 1223, 10.2110/jsr.68.1223
Saylor, 2005, Stratigraphic and chemical correlation of volcanic ash beds in the terminal Proterozoic Nama Group, Namibia. Geol. Mag., 142, 519, 10.1017/S0016756805000932
Sørensen, 2020, Astronomically forced climate change in the late Cambrian, Earth Planet. Sci. Lett., 548, 10.1016/j.epsl.2020.116475
Sperling, 2015, Statistical analysis of iron geochemical data suggests limited late Proterozoic oxygenation, Nat., 523, 451, 10.1038/nature14589
Tostevin, 2019, Calcium isotopes as a record of the marine calcium cycle versus carbonate diagenesis during the late Ediacaran, Chem. Geol., 529, 10.1016/j.chemgeo.2019.119319
Tostevin, 2019, Uranium isotope evidence for an expansion of anoxia in terminal Ediacaran oceans, Earth Planet. Sci. Lett., 506, 104, 10.1016/j.epsl.2018.10.045
Tostevin, 2020, Reconciling proxy records and models of Earth’s oxygenation during the Neoproterozoic and Paleozoic, Interface Focus, 10, 20190137, 10.1098/rsfs.2019.0137
Tostevin, 2016, Low-oxygen waters limited habitable space for early animals, Nat. Commun., 7, 12818, 10.1038/ncomms12818
Tostevin, 2017, Constraints on the late Ediacaran sulfur cycle from carbonate associated sulfate, Precambr. Res., 290, 113, 10.1016/j.precamres.2017.01.004
Vickers-Rich, 2013, Reconstructing Rangea: New discoveries from the Ediacaran of southern Namibia, J. Paleo., 87, 1, 10.1666/12-074R.1
Waltham, 2015, Milankovitch period uncertainties and their impact on cyclostratigraphy, J. Sediment. Res., 85, 990, 10.2110/jsr.2015.66
Wang, 2023, A great late Ediacaran ice age, Natl. Sci. Rev., 10 (8), nwad117
Wang, 2014, An integrated carbon, oxygen, and strontium isotopic studies of the Lantian Formation in South China with implications for the Shuram anomaly, Chem. Geol., 373, 10, 10.1016/j.chemgeo.2014.02.023
Webb, 1982, Tides and the evolution of the Earth-Moon system, Geophys. J. Int., 70, 261, 10.1111/j.1365-246X.1982.tb06404.x
Wei, 2021, Global marine redox evolution from the late Neoproterozoic to the early Paleozoic constrained by the integration of Mo and U isotope records, Earth Sci. Rev., 214, 10.1016/j.earscirev.2021.103506
Wendler, 2016, What drove sea-level fluctuations during the mid-Cretaceous greenhouse climate?, Palaeogeogr. Palaeoclimatol. Palaeoecol., 441, 412, 10.1016/j.palaeo.2015.08.029
Wendler, 2016, Link between cyclic eustatic sea-level change and continental weathering: Evidence for aquifer-eustasy in the Cretaceous, Palaeogeogr. Palaeoclimatol. Palaeoecol., 441, 430, 10.1016/j.palaeo.2015.08.014
Williams, 1993, History of the Earth’s obliquity, Earth Sci. Rev., 34, 1, 10.1016/0012-8252(93)90004-Q
Williams, 1998, Low-latitude glaciation and rapid changes in the Earth’s obliquity explained by obliquity-oblateness feedback, Nat., 396, 453, 10.1038/24845
Wilson, 2012, Deep-water incised valley deposits at the Ediacaran-Cambrian boundary in southern Namibia contain abundant Treptichnus pedum, PALAIOS, 27, 252, 10.2110/palo.2011.p11-036r
Wood, 2018, Innovation not recovery: Dynamic redox promotes metazoan radiations, Biol. Rev., 93, 863, 10.1111/brv.12375
Wood, 2019, Integrated records of environmental change and evolution challenge the Cambrian Explosion, Nat. Ecol. Evol., 3, 528, 10.1038/s41559-019-0821-6
Wood, 2015, Dynamic redox conditions control late Ediacaran metazoan ecosystems in the Nama Group, Namibia. Precambrian Res., 261, 252, 10.1016/j.precamres.2015.02.004
Yan, 2012, Predominance of stratified anoxic Yangtze Sea interrupted by short-term oxygenation during the Ordo-Silurian transition, Chem. Geol., 291, 69, 10.1016/j.chemgeo.2011.09.015
Zhang, 2022, Obliquity-forced aquifer-eustasy during the Late Cretaceous greenhouse world, Earth Planet. Sci. Lett., 596, 10.1016/j.epsl.2022.117800
Zhang, 2022, Orbitally-paced climate change in the early Cambrian and its implications for the history of the Solar System, Earth Planet. Sci. Lett., 583, 10.1016/j.epsl.2022.117420
Zhang, 2019, Global marine redox changes drove the rise and fall of the Ediacara biota, Geobiol., 17, 594, 10.1111/gbi.12359
Zhuravlev, 2023, Cambrian radiation speciation events driven by sea level and redoxcline changes on the Siberian Craton, Sci. Adv., 9, eadh2558, 10.1126/sciadv.adh2558
Xiao, S.H., Narbonne, G.M., 2020. Chapter 18 – The Ediacaran Period. In: Gradstein, F.M., Ogg, J.G., Schmitz, M.D., Ogg, G.M. (Eds.), Geologic Time Scale 2020. Elsevier, vol. 1, pp. 521-561. 10.1016/B978-0-12-824360-2.00018-8.