Inhibitive Performance of Carboxymethyl Cellulose and Additives on Corrosion of Carbon Steel in Acidic and Alkaline Environments

Journal of Bio- and Tribo-Corrosion - Tập 4 - Trang 1-12 - 2018
S. C. Nwanonenyi1, H. C. Obasi1, A. M. Chidiebere2,3
1Department of Polymer and Textile Engineering, Federal University of Technology, Owerri, Nigeria
2Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China
3Electrochemistry and Materials Science Research Laboratory, Department of Chemistry, Federal University of Technology, Owerri, Nigeria

Tóm tắt

The potential of the mixture of carboxymethyl cellulose (CMC) and additives (PVP, PAA and PVAc, respectively) as an eco-friendly corrosion inhibitor for carbon steel in 1 M HCl and 1 M KOH solutions, respectively, was studied using gravimetric and potentiodynamic polarization measurements and quantum chemical calculations. Gravimetric results revealed that CMC inhibited the corrosion of carbon steel in both environments even at low concentration, and the efficiency of inhibition slightly increased with an increase in concentration. Also, the mixture of CMC with additives (PVP, PAA and PVAc, respectively) increased the inhibition efficiency significantly. Temperature studies indicated that efficiency decreased with an increase in temperature. The calculated corrosion activation energies and heat of adsorption parameters supported the physical adsorption mechanism proposed. Freundlich and Langmuir isotherm models were used to approximate the adsorption characteristics of CMC at KOH and HCl, respectively. Polarization curves revealed that CMC adsorption affected both anodic and cathodic partial reactions and acted as a mixed-type inhibitor. Quantum chemical calculations were used to confirm the ability of CMC to adsorb on a carbon steel surface.

Tài liệu tham khảo

Oguzie EE (2007) Corrosion inhibition of aluminium in acidic and alkaline media by Sansevieria trifasciata extract. Corros Sci 49:1527–1539 Oguzie EE (2008) Corrosion inhibitive effect and adsorption behaviour of Hibiscus sabdariffa extract on mild steel in acidic media. Port Electrochim Acta 26:303–314 Rajendran S, Sridevi SP, Anthony N, John Amalraj A, Sundearavadivelu M (2005) Corrosion behaviour of carbon steel in polyvinyl alcohol. Anti-Corros Methods Mater 52:102–107 Bereket GA, Yurt A, Turk H (2003) Inhibition of corrosion of low mild steel in acidic solution by selected polyelectrolytes and polymers. Anti-Corros Methods Mater 50:422–535 Mekki Daouadji M, Chelali N (2004) Influence of molecular weight of poly (ortho-ethoxyaniline on the corrosion inhibition efficiency of mild steel in acidic media. J Appl Polym Sci 91:1275–1284 Selvaraji SK, Kennedy AJ, Amalraj AJ, Rajendran S, Palaniswamy N (2004) Corrosion behaviour of carbon steel in the presence of polyvinylpyrrolidone. Corros Rev 22:219–232 Manickavasagam R, Jeya K, Paramasivam M, Venkatakrishnalyer S (2002) Poly (styrene sulphonic acid) doped polyaniline as an inhibitor of the corrosion of mild steel in hydrochloric acid. Anti-Corros Methods Mater 49:19–26 Morooka M, Sekine I, Tanaki T, Hirosett N, Yuasa M (2001) Effects of polymer-polymer complexes on the corrosion of mild steel in cooling water system. Corros Eng 50:106–114 Hussin MH, Kassim MJ (2010) The corrosion inhibition and adsorption behaviour of Uncaria gambir extract on mild steel in 1 M HCl. Mater Chem Phys 125:461–468 Kumpawat V, Garg U, Tak RK (2009) Corrosion inhibition of aluminium in acid media by naturally occurring plant Artocarpus heterophyllus and Acacia senegal. J Indian Counc Chem 26:82–84 Kumar A, Sankar A, Kumaravel M, Rameshkumar S (2013) Clitoria ternatea–extracts as a corrosion inhibitor for mild steel in acid medium. Int J Eng Res Dev 5:64–67 Dubey AK, Singh G (2007) Corrosion inhibition of mild steel in sulphuric acid solution by using polyethylene glycol methyl ether (PEGME). Port Electrochim Acta 25:221–235 Umoren SA, Ebenso EE, Okafor PC, Ogbobe O (2006) Water soluble polymers as corrosion inhibitors of mild steel in acidic medium. Pigment Resin Technol 35:346–352 Oguzie EE, Li Y, Wang SG, Wang F (2011) Understanding corrosion inhibition mechanisms—experimental and theoretical approach. RSC Adv 1:866–873 Umoren SA, Obot IB (2008) Polyvinylpyrrolidone and polyacrylamide as corrosion inhibitors for mild steel in acidic medium. Surf Rev Lett 25:277–284 Umoren SA, Obot IB, Ebenso EE, Okafor PC, Ogbobe O, Oguzie EE (2006) Gum arabic as a potential corrosion inhibitor for aluminium in alkaline medium and its adsorption characteristics. Anti-Corros Methods Mater 53:277–282 Chetouani A, Medjahed K, Sid-Lakhdar KE, Hammouti B, Benkaddour M, Mansri A (2004) Poly(4-vinylpyridine-poly(3-oxide-ethylene) tosyle) as an inhibitor of iron in sulphuric acid at 80 °C. Corros Sci 6:2421–2430 Sathiyanarayanan SK, Balakrishnan K, Dhawan SK, Trivedi DC (2005) Influence of poly(aminoquinone) on corrosion inhibition of iron in acid media. Appl Surf Sci 252:966–975 Jeyaprabha C, Sathiyanarayanan S, Phani KLN, Venkatachari G (2006) Polyaniline as corrosion for iron in acid solutions. J Appl Polym Sci 110:2144–2153 Shinde V, Sainkar SR, Patil PP (2005) Corrosion protection of poly(o-toluidine) coatings on copper. Corros Sci 47:1352–1369 Torresi RM, Solange S, Pereira da Silva JE, Susana I, Torresi C (2005) Galvanic coupling between the metal substrate and polyaniline acrylic blends: corrosion protection mechanism. Electrochim Acta 50:2213–2218 Sekine I, Sabongi M, Hagiuda H, Shabita Y, Waker T (1992) Corrosion inhibition of mild steel by cationic and anionic polymers in cooling water system. J Electrochem Soc 139:3167–3173 Umoren SA, Obot IB (2008) Polyvinylpyrrolidone and polyacrylamide as corrosion inhibitors for mild steel in acidic medium. Surf Rev Lett 15:277–284 Jianguo J, Lin W, Otieno-Alego V, Schweinsberg DP (1995) Polyvinylpyrrolidone and polyethyleneimine as corrosion inhibitors for the corrosion of a low carbon steel in phosphoric acid. Corrosion Sci 37:975–985 Hirai T, Yameki J, Okada T, Yamaji A (1985) Inhibitive effects of aluminium corrosion by polymer ammonium chloride in alkaline electrolyte. Electrochim Acta 30:61–67 Ashassi-Sorkhabi H, Ghalebsaz-Jeddi N (2005) Inhibition effect of polyethylene glycol on corrosion of carbon steel in sulphuric acid. Mater Chem Phys 92:480–486 Nwanonenyi SC, Madufor IC, Uzoma PC, Chukwujike IC (2016) Corrosion inhibition of mild steel in sulphuric acid environment using millet starch and potassium iodide. IRJPAC 12:1–15 Nwanonenyi SC, Ogbobe O, Madufor IC, Oguzie EE (2016) Inhibitive performance of hydroxypropyl cellulose and potassium iodide on the corrosion of mild steel in sulphuric acid environment. ACSJ 16:1–12 Nwanonenyi SC, Ogbobe O, Madufor IC, Oguzie EE (2016) Influence of polyvinyl acetate on corrosion inhibition of mild steel in sulphuric acidic environment. Eur J Adv Eng Technol 3:52–61 Nwanonenyi SC, Ogbobe O, Oguzie EE (2017) Protection of mild steel corrosion in sulphuric acid environment using wheat starch. Int J Eng Technol 10:11–21 Nwabanne JT, Okafor VN (2012) Adsorption and thermodynamics study of the inhibition of corrosion of mild steel in H2SO4 medium using Vernonia amygdalina. J Miner Mater Charact Eng 11:885–890 Parveen M, Mobin M (2013) Novel corrosion inhibiting formulations involving amino acids and surfactants for mild steel in acid medium. Int J Sci Eng Res 4:167–175 Kliskic M, Radosevic J, Gudic S, Katalinic V (2000) Behaviour of Al-Sn alloy on the negative side of the open-circuit potential. J Appl Electrochem 30:823–827 Chidiebere MA, Oguzie EE, Liu L, Li Y, Wang F (2014) Corrosion inhibition of Q235 mild steel in 0.5M H2SO4 solution by phytic acid and synergistic iodide additives. Ind Eng Chem Res 53:7670–7679 Popova A, Sokolova E, Raicheva S, Christov M (2003) AC and DC study of the temperature effect on mild steel corrosion in acid media in the presence of benzimidazole derivatives. Corros Sci 45:33–58 Oguzie EE (2004) Influence of halide ions on the inhibitive effect of congo red dye on the corrosion of mild steel in sulphuric acid solution. Mater Chem Phys 87:212–217 Ebenso E (2003) Effect of Halide ions on the corrosion inhibition of mild steel in H2SO4 using methyl red. Bull Electrochem 19:209–216 Charitha BP, Padmalatha Rao (2017) Starch as an eco-friendly green inhibitor for corrosion control of 6061-Al alloy. J Mater Environ Sci 8(1):78–89 Yi Y, Li G, Ji Z, Feng D (2013) The use of conducting polyaniline as a corrosion inhibitor for mild steel in hydrochloric acid. Int J Electrochem Sci 8:3540–3550 Xue G, Lu Y, Shi G (1994) SERS studies of the synergistic effect of corrosion inhibition of Cu by two-component inhibitor systems polyvinyl imidazole and benzimidazole. Appl Surf Sci 74(1):37–41 Umoren SA, Ebenso EE (2008) Blends of polyvinyl pyrrolidone and polyacrylamide as corrosion inhibitors for aluminium in acidic medium. Ind J Chem Technol 15:355–363 Bressy-Brondino C, Boutevin B, Hervaud Y, Gaboyard M (2002) Adhesive and anticorrosive properties of poly (vinylidene fluoride) powders blended with phosphonate copolymers on galvanized steel plates. J Appl Polym Sci 83:2277–2287 de Souza S (2007) A smart coating based on polyaniline acrylic blend for corrosion protection of different metals. Surf Coat Technol 201:7574–7581 Abdallah M (2004) Antibacterial drugs as corrosion inhibitors for corrosion of aluminum in hydrochloric Acid solution. Corros Sci 46:1981–1996 Ebenso EE, Eddy NO, Odiongenyi AO (2009) Corrosion inhibition and adsorption properties of methocarbamol on mild steel in acidic medium. Port Electrochim Acta 27:13–22 Ferreira ES, Giancomelli C, Giancomelli FC, Spinelli A (2004) Evaluation of the inhibitor effect of L-ascorbic acid on the corrosion of mild steel. Mater Chem Phys 83:129–134 Martinez S, Matikos-Hukovic M (2003) A nonlinear kinetic model introduced for the corrosion inhibitive properties of some organic inhibitors. J Appl Electrochem 33:1137–1147