Inhibition of dengue virus translation and RNA synthesis by a morpholino oligomer targeted to the top of the terminal 3′ stem–loop structure

Virology - Tập 344 Số 2 - Trang 439-452 - 2006
Katherine L. Brown1, David A. Stein, Theodore C. Pierson, Asim A Ahmed, Karen Clyde, Patrick L. Iversen, Eva Harris
1Division of Infectious Diseases, School of Public Health, University of California at Berkeley, 140 Warren Hall, Berkeley, CA 94720-7360, USA.

Tóm tắt

Từ khóa


Tài liệu tham khảo

Alvarez, 2005, Long-range RNA–RNA interactions circularize the dengue virus genome, J. Virol., 79, 6631, 10.1128/JVI.79.11.6631-6643.2005

Bray, 1989, Mice immunized with recombinant vaccinia virus expressing dengue 4 virus structural proteins with or without nonstructural protein NS1 are protected against fatal dengue virus encephalitis, J. Virol., 63, 2853, 10.1128/JVI.63.6.2853-2856.1989

Brinton, 1988, Sequence and secondary structure analysis of the 5′-terminal region of flavivirus genome RNA, Virology, 162, 290, 10.1016/0042-6822(88)90468-0

Brinton, 1986, The 3′-nucleotides of flavivirus genomic RNA form a conserved secondary structure, Virology, 153, 113, 10.1016/0042-6822(86)90012-7

Cahour, 1995, Growth-restricted dengue virus mutants containing deletions in the 5′ noncoding region of the RNA genome, Virology, 207, 68, 10.1006/viro.1995.1052

Chu, 1985, Replication strategy of Kunjin virus: evidence for recycling role of replicative form RNA as template in semiconservative and asymmetric replication, Virology, 140, 68, 10.1016/0042-6822(85)90446-5

Cleaves, 1979, Methylation status of intracellular dengue type 2 40S RNA, Virology, 96, 159, 10.1016/0042-6822(79)90181-8

Cleaves, 1981, Identification and characterization of type 2 dengue virus replicative intermediate and replicative form RNAs, Virology, 111, 73, 10.1016/0042-6822(81)90654-1

Deas, 2005, Inhibition of flavivirus infections by antisense oligomers specifically suppressing viral translation and RNA replication, J. Virol., 79, 4599, 10.1128/JVI.79.8.4599-4609.2005

Diamond, 2000, Infection of human cells by dengue virus is modulated by different cell types and viral strains, J. Virol., 74, 7814, 10.1128/JVI.74.17.7814-7823.2000

Diamond, 2002, Mycophenolic acid inhibits dengue virus infection by preventing replication of viral RNA, Virology, 304, 211, 10.1006/viro.2002.1685

Edgil, 2003, Translation efficiency determines differences in cellular infection among dengue virus type 2 strains, Virology, 317, 275, 10.1016/j.virol.2003.08.012

Elghonemy, 2005, The majority of the nucleotides in the top loop of the genomic 3′ terminal stem loop structure are cis-acting in a West Nile virus infectious clone, Virology, 331, 238, 10.1016/j.virol.2004.11.008

Falgout, 1989, Proper processing of dengue virus nonstructural glycoprotein NS1 requires the N-terminal hydrophobic signal sequence and the downstream nonstructural protein NS2A, J. Virol., 63, 1852, 10.1128/JVI.63.5.1852-1860.1989

Frolova, 2002, Roles of nonstructural protein nsP2 and alpha/beat interferons in determining the outcome of Sindbis virus infection, J. Virol., 76, 11254, 10.1128/JVI.76.22.11254-11264.2002

Gamarnik, 1998, Switch from translation to RNA replication in a positive-stranded RNA virus, Genes Dev., 12, 2293, 10.1101/gad.12.15.2293

Hahn, 1987, Conserved elements in the 3′ untranslated region of flavivirus RNAs and potential cyclization sequences, J. Mol. Biol., 198, 33, 10.1016/0022-2836(87)90455-4

Hahn, 1988, Nucleotide sequence of dengue 2 RNA and comparison of the encoded proteins with those of other flaviviruses, Virology, 162, 167, 10.1016/0042-6822(88)90406-0

Holden, 2004, Enhancement of dengue virus translation: role of the 3′ untranslated region and the terminal 3′ stem–loop domain, Virology, 329, 119, 10.1016/j.virol.2004.08.004

Khromykh, 2000, cis- and trans-acting elements in flavivirus RNA replication, J. Virol., 74, 3253, 10.1128/JVI.74.7.3253-3263.2000

Khromykh, 2001, Essential role of cyclization domains in flavivirus RNA replication, J. Virol., 75, 6719, 10.1128/JVI.75.14.6719-6728.2001

Khromykh, 2003, Significance in replication of the terminal nucleotides of the flavivirus genome, J. Virol., 77, 10623, 10.1128/JVI.77.19.10623-10629.2003

Kinney, 1997, Construction of infectious cDNA clones for dengue 2 virus: strain 16681 and its attenuated vaccine derivative, strain PDK-53, Virology, 230, 300, 10.1006/viro.1997.8500

Kinney, 2005, Inhibition of dengue virus serotypes 1 to 4 in Vero cell cultures with morpholino oligomers, J. Virol., 79, 5116, 10.1128/JVI.79.8.5116-5128.2005

Li, 2001, The 3′ stem loop of the West Nile virus genomic RNA can suppress translation of chimeric mRNAs, Virology, 287, 49, 10.1006/viro.2001.1015

Lo, 2003, Functional analysis of mosquito-borne flavivirus conserved sequence elements within 3′ untranslated region of West Nile virus by use of a reporting replicon that differentiates between viral translation and RNA replication, J. Virol., 77, 10004, 10.1128/JVI.77.18.10004-10014.2003

Ma, 2000, Synthetic oligonucleotides as therapeutics: the coming of age, Biotechnol. Annu. Rev., 5, 155, 10.1016/S1387-2656(00)05035-3

Markoff, 2003, 5′- and 3′-noncoding regions in flavivirus RNA, Adv. Virus Res., 59, 177, 10.1016/S0065-3527(03)59006-6

Marwick, 1998, First “antisense” drug will treat CMV retinitis, JAMA, 280, 871, 10.1001/jama.280.10.871-JMN0909-6-1

Mohan, 1991, Detection of stable secondary structure at the 3′ terminus of dengue virus type 2 RNA, Gene, 108, 185, 10.1016/0378-1119(91)90433-C

Moulton, 2004, Cellular uptake of antisense morpholino oligomers conjugated to arginine-rich peptides, Bioconjug. Chem., 15, 290, 10.1021/bc034221g

Neuman, 2004, Antisense morpholino-oligomers directed against the 5′ end of the genome inhibit coronavirus proliferation and growth, J. Virol., 78, 5891, 10.1128/JVI.78.11.5891-5899.2004

Olsthoorn, 2001, Sequence comparison and secondary structure analysis of the 3′ noncoding region of flavivirus genomes reveals multiple pseudoknots, RNA, 7, 1370

Perrotta, 1990, The self-cleaving domain from the genomic RNA of hepatitis delta virus: sequence requirements and the effects of denaturant, Nucleic Acids Res., 18, 6821, 10.1093/nar/18.23.6821

Proutski, 1999, Biological consequences of deletions within the 3′-untranslated region of flaviviruses may be due to rearrangements of RNA secondary structure, Virus Res., 64, 107, 10.1016/S0168-1702(99)00079-9

Raviprakash, 1995, Inhibition of dengue virus by novel, modified antisense oligonucleotides, J. Virol., 69, 69, 10.1128/JVI.69.1.69-74.1995

Ruiz-Linares, 1989, Modulations of the in vitro translational efficiencies of Yellow Fever virus mRNAs: interactions between coding and noncoding regions, Nucleic Acids Res., 17, 2463, 10.1093/nar/17.7.2463

Ryan, 1994, Foot-and-mouth disease virus 2A oligopeptide mediated cleavage of an artificial polyprotein, EMBO J., 13, 928, 10.1002/j.1460-2075.1994.tb06337.x

Shi, 1996, Evidence for the existence of a pseudoknot structure at the 3′ terminus of the flavivirus genomic RNA, Biochemistry, 35, 4222, 10.1021/bi952398v

Summerton, 1997, Morpholino antisense oligomers: design, preparation, and properties, Antisense Nucleic Acid Drug Dev., 7, 187, 10.1089/oli.1.1997.7.187

Tilgner, 2005, The flavivirus-conserved penta-nucleotide in the 3′ stem–loop of West Nile virus genome requires a specific sequence and structure for RNA synthesis, but not for viral translation, Virology, 331, 375, 10.1016/j.virol.2004.07.022

Varnavski, 1999, Noncytopathic flavivirus replicon RNA-based system for expression and delivery of heterologous genes, Virology, 255, 366, 10.1006/viro.1998.9564

Wengler, 1986, Analysis of structural properties which possibly are characteristic for the 3′-terminal sequence of the genome RNA of flaviviruses, J. Gen. Virol., 67, 1183, 10.1099/0022-1317-67-6-1183

Wengler, 1978, Studies on virus-specific nucleic acids synthesized in vertebrate and mosquito cells infected with flaviviruses, Virology, 89, 423, 10.1016/0042-6822(78)90185-X

Westaway, 1985, Flaviviridae, Intervirology, 24, 183, 10.1159/000149642

1997

You, 1999, A novel in vitro replication system for dengue virus. Initiation of RNA synthesis at the 3′-end of exogenous viral RNA templates requires 5′- and 3′-terminal complementary sequence motifs of the viral RNA, J. Biol. Chem., 274, 33714, 10.1074/jbc.274.47.33714

Zeng, 1998, Identification of specific nucleotide sequences within conserved 3′-SL in the dengue type 2 virus genome required for replication, J. Virol., 72, 7510, 10.1128/JVI.72.9.7510-7522.1998

Zuker, 2003, mfold web server for nucleic acid folding and hybridization prediction, Nucleic Acids Res., 31, 3406, 10.1093/nar/gkg595