Inhibition of NFκB by the natural product Withaferin A in cellular models of Cystic Fibrosis inflammation

Springer Science and Business Media LLC - Tập 6 - Trang 1-5 - 2009
Rangan Maitra1, Melissa A Porter1, Shan Huang2, Brian P Gilmour1
1Center for Organic and Medicinal Chemistry, The Research Triangle Institute, USA
2Department of Chemistry, Duke University, Durham, USA

Tóm tắt

Cystic Fibrosis (CF) is one of the most common autosomal genetic disorders in humans. This disease is caused by mutations within a single gene, coding for the cystic fibrosis transmembrane conductance regulator (CFTR) protein. The phenotypic hallmark of CF is chronic lung infection and associated inflammation from opportunistic microbes such as Pseudomonas aeruginosa (PA), Haemophilus influenzae, and Staphylococcus aureus. This eventually leads to deterioration of lung function and death in most CF patients. Unfortunately, there is no approved therapy for correcting the genetic defect causal to the disease. Hence, controlling inflammation and infection in CF patients are critical to disease management. Accordingly, anti-inflammatory agents and antibiotics are used to manage chronic inflammation and infection in CF patients. However, most of the anti-inflammatory agents in CF have severe limitations due to adverse side effects, and resistance to antibiotics is becoming an even more prominent problem. Thus, new agents that can be used to control chronic inflammation in CF are needed in the absence of a cure for the disease. Activation of the transcription factor NFκB through Toll-like receptors (TLR) following bacterial infection is principally involved in regulating lung inflammation in CF. NFκB regulates the transcription of several genes that are involved in inflammation, anti-apoptosis and anti-microbial activity, and hyper-activation of this transcription factor leads to a potent inflammatory response. Thus, NFκB is a potential anti-inflammatory drug target in CF. Screening of several compounds from natural sources in an in vitro model of CF-related inflammation wherein NFκB is activated by filtrates of a clinically isolated strain of PA (PAF) led us to Withaferin A (WFA), a steroidal lactone from the plant Withania Somnifera L. Dunal. Our data demonstrate that WFA blocks PAF-induced activation of NFκB as determined using reporter assays, IL-8 measurements and high-content fluorescent imaging of NFκB subunit p65 translocation. Since the airways of CF patients can be specifically targeted for delivery of therapeutics, we propose that WFA should be further studied as an anti-inflammatory agent in models of CF related inflammation mediated by NFκB.

Tài liệu tham khảo

Ma J, Davis PB: What we know and what we do not know about cystic fibrosis transmembrane conductance regulator. Clinics in Chest Medicine. 1998, 19: 459-471. 10.1016/S0272-5231(05)70093-9. Ferrari M, Cremonesi L: Genotype-phenotype correlation in cystic fibrosis patients. Annales de Biologie Clinique. 1996, 54: 235-241. Pilewski JM, Frizzell RA: Role of CFTR in airway disease. Physiol Rev. 1999, 79: S215-255. Witko-Sarsat V, Sermet-Gaudelus I, Lenoir G, Descamps-Latscha B: Inflammation and CFTR: might neutrophils be the key in cystic fibrosis?. Mediators Inflamm. 1999, 8 (8): 7-11. 10.1080/09629359990658. Chmiel JF, Berger M, Konstan MW: The role of inflammation in the pathophysiology of CF lung disease. Clin Rev Allergy Immunol. 2002, 23: 5-27. 10.1385/CRIAI:23:1:005. Greene CM, Carroll TP, Smith SG, Taggart CC, Devaney J, Griffin S, O'Neill SJ, McElvaney NG: TLR-induced inflammation in cystic fibrosis and non-cystic fibrosis airway epithelial cells. J Immunol. 2005, 174: 1638-1646. Aldallal N, McNaughton EE, Manzel LJ, Richards AM, Zabner J, Ferkol TW, Look DC: Inflammatory response in airway epithelial cells isolated from patients with cystic fibrosis. Am J Respir Crit Care Med. 2002, 166: 1248-1256. 10.1164/rccm.200206-627OC. Salva PS, Doyle NA, Graham L, Eigen H, Doerschuk CM: TNF-alpha, IL-8, soluble ICAM-1, and neutrophils in sputum of cystic fibrosis patients. Pediatr Pulmonol. 1996, 21: 11-19. 10.1002/(SICI)1099-0496(199601)21:1<11::AID-PPUL2>3.0.CO;2-T. Gibson RL, Burns JL, Ramsey BW: Pathophysiology and management of pulmonary infections in cystic fibrosis. Am J Respir Crit Care Med. 2003, 168: 918-951. 10.1164/rccm.200304-505SO. Kawai T, Akira S: TLR signaling. Cell Death Differ. 2006, 13: 816-825. 10.1038/sj.cdd.4401850. Mishra LC, Singh BB, Dagenais S: Scientific basis for the therapeutic use of Withania somnifera (ashwagandha): a review. Altern Med Rev. 2000, 5: 334-346. Bargagna-Mohan P, Ravindranath PP, Mohan R: Small molecule anti-angiogenic probes of the ubiquitin proteasome pathway: potential application to choroidal neovascularization. Invest Ophthalmol Vis Sci. 2006, 47: 4138-4145. 10.1167/iovs.05-1452. Mohan R, Hammers HJ, Bargagna-Mohan P, Zhan XH, Herbstritt CJ, Ruiz A, Zhang L, Hanson AD, Conner BP, Rougas J, Pribluda VS: Withaferin A is a potent inhibitor of angiogenesis. Angiogenesis. 2004, 7: 115-122. 10.1007/s10456-004-1026-3. Becker MN, Sauer MS, Muhlebach MS, Hirsh AJ, Wu Q, Verghese MW, Randell SH: Cytokine secretion by cystic fibrosis airway epithelial cells. Am J Respir Crit Care Med. 2004, 169: 645-653. 10.1164/rccm.200207-765OC. Wu Q, Lu Z, Verghese MW, Randell SH: Airway epithelial cell tolerance to Pseudomonas aeruginosa. Respir Res. 2005, 6: 26-10.1186/1465-9921-6-26. Heijerman H: Infection and inflammation in cystic fibrosis: A short review. J Cyst Fibros. 2005, 4 (Suppl 2): 3-5. 10.1016/j.jcf.2005.05.005. Terheggen-Lagro SW, Rijkers GT, Ent van der CK: The role of airway epithelium and blood neutrophils in the inflammatory response in cystic fibrosis. J Cyst Fibros. 2005, 4 (Suppl 2): 15-23. 10.1016/j.jcf.2005.05.007. MacRedmond R, Greene C, Taggart CC, McElvaney N, O'Neill S: Respiratory epithelial cells require Toll-like receptor 4 for induction of human beta-defensin 2 by lipopolysaccharide. Respir Res. 2005, 6: 116-10.1186/1465-9921-6-116. Hornung V, Rothenfusser S, Britsch S, Krug A, Jahrsdorfer B, Giese T, Endres S, Hartmann G: Quantitative expression of toll-like receptor 1–10 mRNA in cellular subsets of human peripheral blood mononuclear cells and sensitivity to CpG oligodeoxynucleotides. J Immunol. 2002, 168: 4531-4537. Wright JG, Christman JW: The role of nuclear factor kappa B in the pathogenesis of pulmonary diseases: implications for therapy. Am J Respir Med. 2003, 2: 211-219. Park GY, Christman JW: Nuclear factor kappa B is a promising therapeutic target in inflammatory lung disease. Curr Drug Targets. 2006, 7: 661-668. 10.2174/138945006777435317. Christman JW, Sadikot RT, Blackwell TS: The role of nuclear factor-kappa B in pulmonary diseases. Chest. 2000, 117: 1482-1487. 10.1378/chest.117.5.1482. Samdup DZ, Smith RG, Il Song S: The use of complementary and alternative medicine in children with chronic medical conditions. Am J Phys Med Rehabil. 2006, 85: 842-846. 10.1097/01.phm.0000233183.17059.b9. Falsey RR, Marron MT, Gunaherath GM, Shirahatti N, Mahadevan D, Gunatilaka AA, Whitesell L: Actin microfilament aggregation induced by withaferin A is mediated by annexin II. Nat Chem Biol. 2006, 2: 33-38. 10.1038/nchembio755. Jayaprakasam B, Zhang Y, Seeram NP, Nair MG: Growth inhibition of human tumor cell lines by withanolides from Withania somnifera leaves. Life Sci. 2003, 74: 125-132. 10.1016/j.lfs.2003.07.007. Prescott WA, Johnson CE: Antiinflammatory therapies for cystic fibrosis: past, present, and future. Pharmacotherapy. 2005, 25: 555-573. 10.1592/phco.25.4.555.61025.