Inhibition Role of Trace Metal Ion Additives on Zinc Dendrites during Plating and Striping Processes

Advanced Materials Interfaces - Tập 6 Số 23 - 2019
Ge Chang1, Shijun Liu1, Yanan Fu2, Hao Xin1, Wei Jin3, Xiaobo Ji1, Jiugang Hu1,4
1College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
2Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
3School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
4Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha 410083, China

Tóm tắt

AbstractDendritic inhibition is crucial for the cycle and reversibility of zinc‐based batteries. In this work, the trace metal ions including lead, copper, and nickel are used as additives to inhibit the growth of zinc dendrites. The interfacial evolution behaviors of zinc deposits during plating and striping processes are in situ observed by synchrotron radiation X‐ray imaging technique. The addition of lead and nickel ions induces a polarization role for zinc reduction, whereas copper ions present a depolarization role. After adding trace lead or nickel ions, zinc deposits become smoother and dendrites are effectively suppressed because of the homogenous deposition sites induced by co‐deposition of lead or nickel. Due to the depolarization role of copper ions, a large number of bubbles generate on the substrate and the loose zinc dendrites adhere on the bubble surface. In addition, the zinc deposits in the presence of trace lead ions present a more homogeneous stripping behavior. These results are helpful for understanding the inhibition role of metal ions additives on zinc dendrites and potentially improve the reversibility of zinc‐based batteries.

Từ khóa


Tài liệu tham khảo

10.1016/j.electacta.2017.05.072

10.1002/adma.201601357

10.1149/2.1031906jes

10.1039/C8GC03389G

10.1016/j.hydromet.2017.10.030

10.1016/j.hydromet.2015.02.007

10.1002/adma.201604685

10.1149/1.2085653

10.1007/BF01016034

Kim H.‐I., 2015, J. Electrochem. Soc., 645, 7

10.1021/acsami.7b01705

10.1002/adma.201504526

10.1016/j.jpowsour.2012.11.046

10.1016/j.hydromet.2017.06.004

10.1016/j.electacta.2007.02.063

10.1039/C4CS00015C

10.1002/er.3499

10.1016/0378-7753(91)80117-G

10.1016/j.electacta.2017.04.130

10.1016/0013-4686(95)00435-1

10.1002/anie.201509364

10.1021/acsami.6b11098

10.1186/1741-7007-5-6

10.1063/1.4942920

10.1039/C4CC03187C

10.1038/nmat3793

10.1038/417139a

10.3390/batteries4030046

10.1016/j.electacta.2012.06.091

Dean J. A., 1999, Lange's Handbook of Chemistry

Bard A. J., 2000, Electrochemical Methods: Fundamentals and Applications, 1

10.1021/ja512437u

10.1080/00202967.2016.1148442

10.1149/2.0311414jes

10.1016/j.jallcom.2016.12.228

10.1016/0257-8972(86)90051-4

10.1149/2.1241609jes

10.1039/c2jm16916a

10.1021/ja107362z

10.1039/C3CY00689A

10.1039/C4TA02970D

10.1149/2.1371704jes